

Agilent InfinityLab LC Series 1260 Infinity II Preparative Fraction Collector

User Manual

Notices

Document Information

Document No: SD-29000228 Rev. C Part No: G1364-90030 Rev. C EDITION 10/2019

Copyright

© Agilent Technologies, Inc. 2017-2019

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license

Restricted Rights Legend

U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In This Guide

This manual contains technical reference information about the Agilent InfinityLab LC Series 1260 Infinity II Preparative Fraction Collector (G1364E).

1 Introduction

This chapter gives an introduction to the module and an instrument overview.

2 Site Requirements and Specifications

This chapter provides information on environmental requirements, physical and performance specifications.

3 Using the Module

This chapter explains the essential operational parameters of the module.

4 Preparing the Fraction Collector

This chapter explains the operational parameters of the module.

5 Troubleshooting and Diagnostics

This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.

6 Error Information

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

7 Maintenance

This chapter describes the maintenance of the module.

8 Parts for Maintenance and Repair

This chapter provides information on parts for maintenance and repair.

9 Identifying Cables

This chapter provides information on cables used with the module.

10 Hardware Information

This chapter describes the module in more detail on hardware and electronics.

11 Appendix

This chapter provides additional information on safety, legal, and web.

Contents

1	Introduction 8
	Product Description 9 Features 10 Overview of the Module 11 Fraction Collector Principle 12 Leak and Waste Handling 13
2	Site Requirements and Specifications 15
	Site Requirements 16 Physical Specifications 19 Performance Specifications 20
3	Using the Module 23
	Configuration and Operation of the Fraction Collector 24 Solvent Information 34 Turn on/off 36 Status Indicators 38
4	Preparing the Fraction Collector 39
	Best Practices 40 Solvent Information 41 Capillary Color Coding Guide 46 Install Capillary Connections 47 Setting up the Fraction Collector with the Instrument Control Interface 49 Method Parameter Settings 53
5	Troubleshooting and Diagnostics 61
	User Interfaces 62 Agilent Lab Advisor Software 63

6 Error Information 64

What Are Error Messages 65 General Error Messages 66 Module Error Messages 73

7 Maintenance 84

Introduction to Maintenance 85 Warnings and Cautions 86 Cleaning the Module Overview of Maintenance 88 Replace the Inlet/Waste Tubings (Preparative) Replace the Valve to Needle Tubing (Preparative) Exchange the Preparative Needle Assembly Exchange the Needle/Capillary Carrier Assembly (Preparative) 100 Exchange the Diverter Valve Exchange the Internal Tray 106 Repair or Exchange a Funnel of the Internal Tray 108 Exchange the Leak Sensor 110 Replace the Module Firmware

8 Parts for Maintenance and Repair 113

Preparative Fraction Collector Parts 114
Supported Trays for a Fraction Collector 119
List of Recommended Test Tubes 120
List of Recommended Vials and Caps 121
List of Recommended Plates and Closing Mats 124
Fraction Collector Accessory Kits 126

9 Identifying Cables 127

Cable Overview 128
Analog Cables 130
Remote Cables 132
CAN/LAN Cables 136
RS-232 Cables 137
USB 138

10 Hardware Information 139

Firmware Description 140
Electrical Connections 143
Interfaces 146
Setting the 6-bit Configuration Switch 153
Early Maintenance Feedback 157
Instrument Layout 158

11 Appendix 159

General Safety Information 160
Waste Electrical and Electronic Equipment (WEEE) Directive 166
Radio Interference 167
Sound Emission 168
Agilent Technologies on Internet 169

1 Introduction

```
Product Description 9
Product Description (G1364E) 9
Features 10
Features (G1364E) 10
Overview of the Module 11
Overview of the Preparative Fraction Collector 11
Fraction Collector Principle 12
Leak and Waste Handling 13
Leak and Waste 13
Waste Concept 14
Leak Sensor 14
```

This chapter gives an introduction to the module and an instrument overview.

Product Description

Product Description

Product Description (G1364E)

The 1260 Infinity II Preparative Fraction Collector is optimized for laboratories performing semipreparative-scale purification of milligram to low gram quantities with typical flow rates from 5 to 100 mL/min. This fraction collector fits in the modular design of the InfinityLab LC Series, occupying minimal bench space. Lowest delay volumes minimize peak dispersion and carryover for highest purity and recovery. A wide variety of collection tubes as well as microtiter plates are available. For high-throughput applications, you can combine up to three fraction collectors in a single LC system. Maximize your capacity up to 648 fractions within the same foot print. Upgrade pass exists to increase your capacity based on your demand. In addition a fourth fraction collector can be configured for recovery collection.

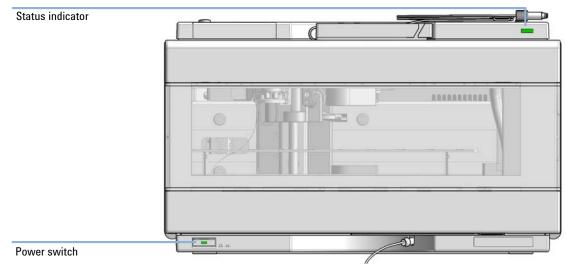


Figure 1 Overview of the fraction collector

Features

Features

Features (G1364E)

Purification efficiency

- Lowest delay volumes for minimum peak dispersion and carryover
- Automated delay calibration facilitates highest fraction purity while maintaining high-precision sample recovery

Instrument efficiency

- Per module collection of up to 216 fractions in glass tubes with 4 outer diameters of tubes available, or in microtiter plates
- Multiple collection modes with fraction triggering based on time, peak, or mass for exact collection of required fractions

Laboratory efficiency

- Expandable capacity up to 864 fractions within the same footprint
- Smooth upgrade paths allow you to increase capacity based on demand
- Forced fume extraction enables use of fraction collector outside a fume cupboard

Overview of the Module

Overview of the Preparative Fraction Collector

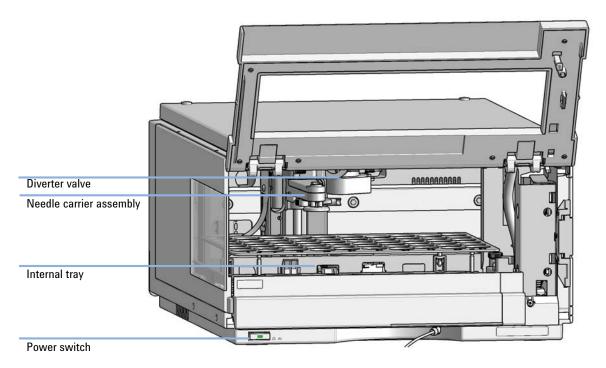


Figure 2 Overview of the Preparative Fraction Collector

1

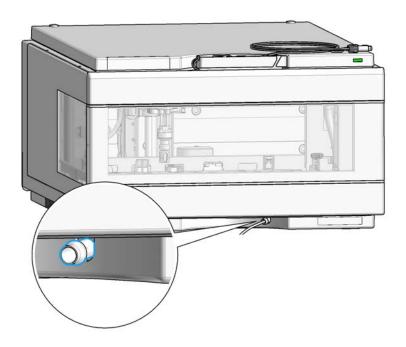
Fraction Collector Principle

Fraction Collector Principle

The movements of the Fraction Collector components during the sequence are monitored continuously by the Fraction Collector processor. The processor defines specific time windows and mechanical ranges for each movement. If a specific step of the sequence is not completed successfully, an error message is generated.

The standard fractioning sequence occurs in the following order:

- 1 The Fraction Collector starts always from the home position.
- **2** When the sample is injected, the fraction probe with diverter valve moves to the required position.
- **3** When the trigger is given by the detector, the diverter valve opens to collect the fraction.
- **4** When the trigger is given by the detector, the diverter valve closes and the arm moves to the next fraction position or back to the home position if this function is chosen in the CDS.


Fractioning Sequence

Before the start of the sequence, and during an analysis, the diverter valve is in the fraction start position. In this position, the mobile phase flows through the diverter valve towards waste

Leak and Waste Handling

Leak and Waste

1

Leak and Waste Handling

Waste Concept

1 Agilent recommends using the 6 L waste can with 1 Stay Safe cap GL45 with 4 ports (5043-1221) for optimal and safe waste disposal. If you decide to use your own waste solution, make sure that the tubes don't immerse in the liquid.

Leak Sensor

Solvent incompatibility

The solvent DMF (dimethyl formamide) leads to corrosion of the leak sensor. The material of the leak sensor, PVDF (polyvinylidene fluoride), is incompatible with DMF.

Do not use DMF.

2 Site Requirements and Specifications

Site Requirements 16
Physical Specifications 19
Performance Specifications 20

This chapter provides information on environmental requirements, physical and performance specifications.

Site Requirements

Site Requirements

A suitable environment is important to ensure optimal performance of the instrument

Power Considerations

The module power supply has wide ranging capability. It accepts any line voltage in the range described in Table 1 on page 19. Consequently there is no voltage selector in the rear of the module. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING

Hazard of electrical shock or damage of your instrumentation can result, if the devices are connected to a line voltage higher than specified.

Connect your instrument to the specified line voltage only.

WARNING

Electrical shock hazard

The module is partially energized when switched off, as long as the power cord is plugged in.

The cover protects users from personal injuries, for example electrical shock.

- Do not open the cover.
- Do not operate the instrument and disconnect the power cable in case the cover has any signs of damage.
- ✓ Contact Agilent for support and request an instrument repair service.

WARNING

Inaccessible power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

- Make sure the power connector of the instrument can be easily reached and unplugged.
- Provide sufficient space behind the power socket of the instrument to unplug the cable.

Site Requirements

Power Cords

Country-specific power cords are available for the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

Agilent makes sure that your instrument is shipped with the power cord that is suitable for your particular country or region.

WARNING

Unintended use of power cords

Using power cords for unintended purposes can lead to personal injury or damage of electronic equipment.

- Never use a power cord other than the one that Agilent shipped with this instrument.
- Never use the power cords that Agilent Technologies supplies with this instrument for any other equipment.
- Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

WARNING

Absence of ground connection

The absence of ground connection can lead to electric shock or short circuit.

Never operate your instrumentation from a power outlet that has no ground connection.

WARNING

Electrical shock hazard

Solvents may damage electrical cables.

- Prevent electrical cables from getting in contact with solvents.
- Exchange electrical cables after contact with solvents.

Site Requirements

Bench Space

The module dimensions and weight (see Table 1 on page 19) allow you to place the module on almost any desk or laboratory bench. It needs an additional 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear for air circulation and electric connections.

If the bench shall carry a complete HPLC system, make sure that the bench is designed to bear the weight of all modules.

The module should be operated in a horizontal position.

NOTE

Agilent recommends that you install the HPLC instrument in the InfinityLab Flex Bench rack. This option helps to save bench space as all modules can be placed into one single stack. It also allows to easily relocate the instrument to another Lab.

Condensation

CAUTION

Condensation within the module

Condensation can damage the system electronics.

- Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.
- If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.

Physical Specifications

Table 1 **Physical Specifications**

Туре	Specification	Comments
Weight	13.5 kg (29.8 lbs)	w/o sample thermostat
Dimensions (height × width × depth)	200 x 345 × 440 mm (8 x 13.5 × 17 inches)	
Line voltage	100 - 240 V~, ± 10 %	Wide-ranging capability
Line frequency	50 or 60 Hz, ± 5 %	
Power consumption	200 VA / 180 W	
Ambient operating temperature	4 - 40 °C (41 - 104 °F)	
Ambient non-operating temperature	-40 - 70 °C (-40 - 158 °F)	
Humidity	< 95 %, at 25 - 40 °C (77 - 104 °F)	Non-condensing
Operating altitude	Up to 3000 m (9842 ft)	
Non-operating altitude	Up to 4600 m (15092 ft)	For storing the module
Safety standards: IEC, EN, CSA, UL	Installation category II, Pollution degree 2	For indoor use only.
ISM Classification	ISM Group 1 Class B	According to CISPR 11
Permitted solvents	Auto-ignition temperature ≥200 °C Boiling point ≥56 °C Ignition Class IIA, IIB (IEC60079-20-1)	

Performance Specifications

Performance Specifications

Table 2 Performance Specifications 1260 Infinity II Preparative Fraction Collector (G1364E)

Туре	Specification	Comment
Delay Volume (in µL)	Fraction collector inlet to diverter valve: ~500 (typical, depends on length of the tubing) Diverter valve: ~15 Diverter valve to needle: ~110 Needle: ~5	
Minimum system flow	Depending on the recommended flowrates of the installed tubing kit	
Maximum system flow	100 mL/min	
Maximum collection volume	45 mL	with 30 x 100 mm (OD x L) tube
Maximum capacity	3 fraction collectors in parallel plus one recovery fraction collector	LC & CE drivers A.02.19 (or above) is required for clustering
Trigger modes	Time slices Peak (threshold, up- / downslope Timetable (combination of time intervals and peak) Manual trigger (supported only with Agilent Instant Pilot G4208A)	
Trigger Sources	G7115A, 1260 Infinity II DAD G7165A, 1260 Infinity II MWD G7114A, 1260 Infinity II VWD G6125BA, Single Quadrupole LC/MSD G6135BA, Single Quadrupole LC/MSD XT G7121A, 1260 Infinity II FLD G4260B, 1260 Infinity II ELSD G7162A, 1260 Infinity II RID Other detectors can be used but are not supported for fraction collection.	
Operating Modes	Discrete fractions: default mode for all vessels. The flow is diverted to waste, while moving from one vessel position to the next vessel position Continuous flow: optional, available only when using well plates. It is possible to move from one well plate position to the next one without diverting the flow into the well plate to waste	

Table 2 Performance Specifications 1260 Infinity II Preparative Fraction Collector (G1364E)

Туре	Specification	Comment
Diverter valve	3/2 valve, with switching time <100 ms	
Maximum pressure	6 bar at the diverter valve during switching	
Plates/Trays	4 x well-plates full tray (MTP) * (for use with deep well plates only) 2 × well-plates std. tray (MTP) (for use with deep well plates, only) + 10 × 2 mL vials* (+ 1 half tray) 100 x 2 mL in std. tray (+ 1 half tray)* 3 x 40 x 2 mL in half tray* 3 x 15 x 6 mL in half tray* Full tray with 40 test tubes (30 mm OD, max. height 100 mm, 45 mL / tube) Full tray with 60 test tubes (25 mm OD, max. height 100 mm, 25 mL / tube) Full tray with 126 test tubes (16 mm OD, max. height 100 mm, 12 mL / tube) Full tray with 215 test tubes (12 mm OD, max. height 100 mm, 7 mL / tube) Installed trays are automatically detected and identified. Only one type of well-plates can be used at a time in one tray. Only the 96 deep well-plates can be used (without closing mats)	
Fraction Containers	30 x 100 mm (OD x L) tubes, 45 mL / tube 25 x 100 mm (OD x L) tubes, 25 mL / tube 16 x 100 mm (OD x L) tubes, 12 mL / tube 12 x 100 mm (OD x L) tubes, 7 mL / tube Vials can be used as recommended by Agilent Technologies For use with uncapped vials, tests tubes and well plates only!	
Minimum tube height	48 mm	
Maximum tube height	100 mm	
Instrument Control	LC & CE Drivers A.02.17 or above Instrument Control Framework (ICF) A.02.04 or above Instant Pilot (G4208A) with firmware B.02.22 or above Lab Advisor B.02.10 or above	

Site Requirements and Specifications Performance Specifications 2

Table 2 Performance Specifications 1260 Infinity II Preparative Fraction Collector (G1364E)

Туре	Specification	Comment
Communications	Controller-area network (CAN), Local Area Network (LAN) ERI: ready, start, stop and shut-down signals	
Maintenance and safety-related features	Extensive diagnostics, error detection and display with Agilent Lab Advisor software Leak detection, safe leak handling, leak output signal for shutdown of pumping system, and low voltages in major maintenance areas	
GLP features	Early maintenance feedback (EMF) for continuous tracking of instrument usage with user-settable limits and feedback messages. Electronic records of maintenance and errors	
Housing	All materials recyclable.	

3 Using the Module

```
Configuration and Operation of the Fraction Collector

Delay Volumes and Delay Calibration 24

Setting up a Fraction Collector Method 24

Viewing Your Results 29

Special Applications 31

Optimizing Fraction Collection 32

Limitations and How to Avoid Problems 32

Application Notes 33

Solvent Information 34

Turn on/off 36

Status Indicators 38
```

This chapter explains the essential operational parameters of the module.

Configuration and Operation of the Fraction Collector

Configuration and Operation of the Fraction Collector

Delay Volumes and Delay Calibration

For details on delay volumes and delay calibration, see Technical Note *Delay* calibration method.

Setting up a Fraction Collector Method

Fraction Trigger Mode

Use Timetable: Enables the Timetable, but requires a timetable event.

Peak-based: If **Peak-based** is selected, the collection of a fraction is triggered by the signal of the detector. The detailed trigger conditions are specified in the **Peak Detectors** table. In the peak-based trigger mode all entries in the timetable are ignored.

Max. Peak Duration: Defines a maximum collection time in case that the signal does not reach the condition to cut the fraction as exhibited in Figure 3 on page 25. This could be caused by tailing peaks or if the baseline is drifting during gradient runs. The default value is set to 0.5 minutes. If broad peaks are expected, this value should be increased without exceeding the run time.

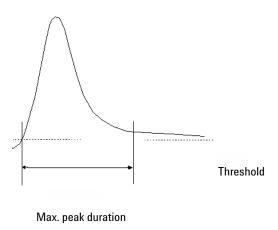


Figure 3 Maximum Fraction Duration

Peak Detectors

In the **Peak Detectors** section a list of all peak detectors that are connected to the system is displayed. Agilent InfinityLab LC Series diode array detectors, multiwavelength detectors, variable wavelength detectors and fluorescence detectors are recognized automatically. Other detectors, e.g. Agilent 6000 mass-selective detectors or HP1050 detectors, are connected through the Universal Interface Box (UIB).

The peak detector table contains seven columns:

Working Mode

For each peak detector **Threshold only, Threshold/Slope** or **Slope only** are possible.

In the **Threshold only** mode the settings for **Up Slope**, **Down Slope** and **Upper Threshold** in the subsequent columns are ignored. Fraction collection is triggered whenever the detector signal exceeds the specified threshold value. When the signal drops below the threshold value fraction collection is stopped.

In the **Slope only** mode fraction collection is triggered on the slope of the detector signal. Adequate values for **Up Slope** and **Down Slope** can be specified in the corresponding fields.

Configuration and Operation of the Fraction Collector

In the **Threshold/Slope** mode fraction collection is triggered on the corresponding values for threshold and slope. The fraction collection is started if the detector signal exceeds both the threshold and the **Up Slope** value. The fraction collection is stopped if the detector signal drops either below the threshold or the **Down Slope** value.

To specify the trigger values **Up Slope**, **Down Slope**, **Threshold** and **Upper Threshold** we recommend to use the **Fraction Preview** tool as described in "Fraction Preview" on page 27.

Upper Threshold

At high absorbance values the light intensity on the detector is extremely low and consequently detector noise will be superimposed on the detector signal. In this case the detector noise might trigger fraction collection. To avoid false fraction collection triggering, we recommend setting an **Upper Threshold** well below the limit where this false triggering effect might occur. As soon as the detector signal exceeds the **Upper Threshold**, settings for **Up Slope** or **Down Slope** will be ignored until the signal drops again below the **Upper Threshold**.

When using more than one peak detector fraction collection can be triggered either when **all selected peak detectors** detect a peak or when **at least one selected peak detector** detects a peak basing on the settings in the peak detectors table above.

If an MSD is used for mass-based fraction collection, **Use MSD for mass-based Fraction Collection** must be checked.

Timetable

The **Timetable** can be used to program changes in the Fraction Trigger Mode during the analysis by entering a Time and specifying the trigger settings.

Trigger Mode Off, Peak Based and Time Based can be selected. If the Off is selected, no fractions are collected. The last entry in the timetable has to be the command Off.

Whenever the **Peak Based** mode is specified fractions will be collected based on the peak detection parameters given in the Peak Detector table. Additionally a **Maximum Peak Duration** in minutes has to be specified. This parameter is mandatory if you use Peak Controlled fraction collection, but is disabled for Time Based fraction collection.

Using the Module

3

Configuration and Operation of the Fraction Collector

When the Time Based mode is chosen two different options are available:

- The **# of Fractions** can be edited to collect a fixed number of equal fractions in a give time interval. This time interval is defined by the time value in the current and following timetable line.
- **Timeslices [min]** can be edited to collect fractions with a defined collection time. With this option the collection time of the last fraction can be shorter. This depends on the overall runtime.

For editing the Timetable the functions **Insert**, **Append**, **Cut**, **Copy** and **Paste** are offered.

To access the additional sections in the **Setup Fraction Collector** dialog box click **More.**

Time

In the time section of the dialog box the **Stoptime** and the **Posttime** for the fraction collector can be specified. By default the Stoptime is set to as pump and the posttime is switched OFF.

Auxiliary

In the Auxiliary section the **Maximum fill volume** per location can be specified. If as configured is selected, the pre-configured volume is used. This ensures that the location (well, vial or tube) cannot be overfilled during fraction collection. This volume can be further reduced by defining a customized volume.

Fraction Preview

To determine the appropriate fraction collection parameters the Agilent ChemStation provides a valuable tool that becomes accessible by pushing the button labelled Fraction Preview Tool (see Figure 4 on page 28) in the Peak Detectors section

Configuration and Operation of the Fraction Collector

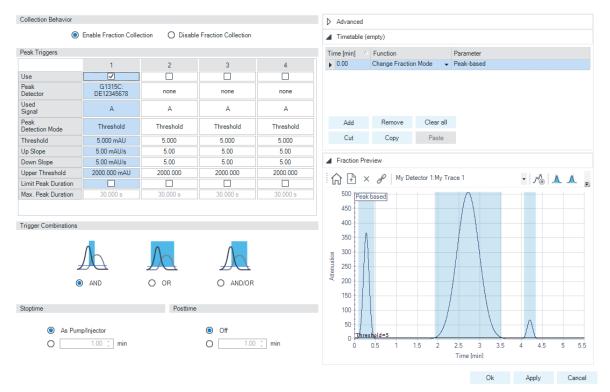
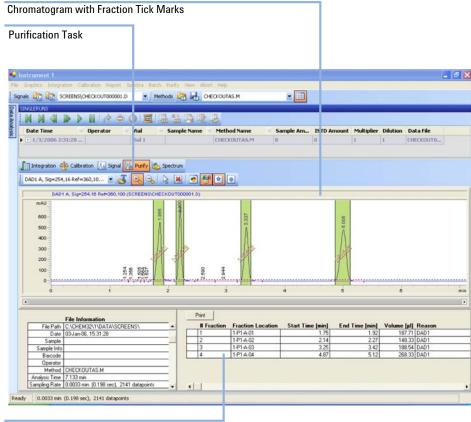


Figure 4 Fraction Preview dialog box


The Fraction Preview screen allows to test the fraction collection parameters a-gainst an example chromatogram. It can also be used to optimize the fraction collection parameters interactively. With the help of this tool values for up and down slope as well as for upper and lower threshold can easily be graphically specified. To load a chromatogram (for example a pilot run) click **Load Signal**. Parameters can now be changed either manually in the Detector Table and Timetable or graphically in the **Fraction Preview** screen. By pushing the desired buttons on the right hand side of the **Fraction Preview** screen the chromatogram can be zoomed, the values for up and down slope can be specified and the upper and lower threshold level can be set- up. The graphically specified values are automatically transferred to the Peak Detector Table.

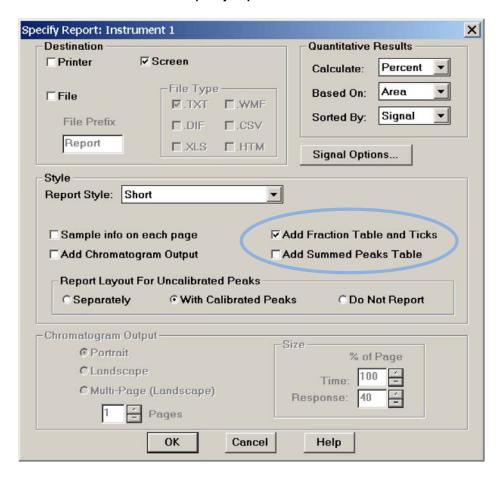
Viewing Your Results

Data Analysis

In order to display the tick marks for the collected fractions on the screen, click **Signal options** from the **Graphics** menu. Then choose **Separated** in the **Layout dropdown list**.

To review your chromatograms, file information and a fraction list, select the **Data Analysis** view and click **Fraction Task** as displayed below.

Fraction table


Figure 5 Fraction Task button

Configuration and Operation of the Fraction Collector

In order to display the tick marks for the collected fractions on the screen, click **Signal options** from the **Graphics** menu. Then choose **Separated** in the Layout dropdown list.

Report

In order to create reports with a fraction table and tick marks the item **Add Fraction Table and Ticks** in the **Specify Report** box has to be checked.

Special Applications

Sample Recovery

The fraction collector offers different possibilities for sample recovery:

- The preferred recovery strategy is to install two fraction collectors in your LC systems and use the last of those fraction collectors for recovery. This recovery fraction collector can be selected in the Configuration dialog box. The fourth fraction collector in your systems will always be used for sample recovery.
- For the following tray configurations fixed recovery location will be assigned from the ChemStation. In order to disable the recovery the tray configuration has to be changed.
 - **a** Standard tray for two well plates + 10 x 2 ml vials (G2258-60011) and Halftray for 40 x 2 mL vials (G1313-44512).
 - In this configuration the forty 2 ml vials on the half will automatically be used for recovery.
 - b Standard tray for two well plates + 10 x 2 ml vials (G2258-60011) and Halftray for 15 x 6 mL vials (G1313-44513).
 In this configuration the fifteen 6 mL vials on the half will automatically be used for recovery.

CAUTION

Fraction contamination

With each start of a new sequence the recovery will start at the same position. This can lead to fraction contamination, if the vessels containing the recovery fractions are not exchanged.

Exchange the vessels containing the recovery fractions before starting a new sequence.

NOTE

The number of recovery locations automatically defines the maximum number of injections. When using the standard tray for two well plates and 10 funnels, only ten injections per sequence are executed.

Optimizing Fraction Collection

Time-based fraction collection

- Time slices must have a length of at least 0.05 min.
- Set # of Fractions such that length of resulting fractions is at least 0.05 min.

Peak-based fraction collection

- Set threshold and slope values such that length of fractions is at least 0.05 min.
- Unresolved peaks can be separated using appropriate threshold and slope values. If two unresolved peaks are to be collected as one fraction, collect based on threshold only.
- If the baseline of the chromatogram is below or above 0 mAU, this offset is not accounted for when triggering peaks using a threshold value. The threshold value is always added to 0 mAU.

Limitations and How to Avoid Problems

Rinse Fraction Collection Needle

If Rinse Fraction Collection Needle is set to Between fraction collection, at least 0.3 min are required to perform this task.

When doing time-based fraction collection rinsing the needle is only possible between two time table entries, which must have a gap of at least 0.3 min. For peak-based fraction collection a time gap of also at least 0.3 min is required. If a new peak is detected during the rinse process, it is aborted and the needle moves back to the next free fraction position. Depending on flow rate and delay volume VD1 the beginning of this peak may be lost.

If you have recovery positions in your fraction collector or if you are using one fraction collector for sample recovery in a multiple fraction collector configuration, the rinse function **between fraction collection** is ignored.

Configuration and Operation of the Fraction Collector

Application Notes

More information about the Agilent InfinityLab LC Series fraction collectors and purification systems are available from a of application notes. Printed versions can be ordered from Agilent or pdf-files can be downloaded from the Agilent Website

http://www.chem.agilent.com

Solvent Information

Observe the following recommendations on the use of solvents.

- Follow the recommendations for avoiding the growth of algae, see the pump manuals.
- Small particles can permanently block capillaries and valves. Therefore, always filter solvents through 0.22 μm filters.
- Avoid or minimize the use of solvents that may corrode parts in the flow path.
 Consider specifications for the pH range given for different materials such as flow cells, valve materials etc. and recommendations in subsequent sections.

Solvent compatibility for stainless steel in standard LC systems

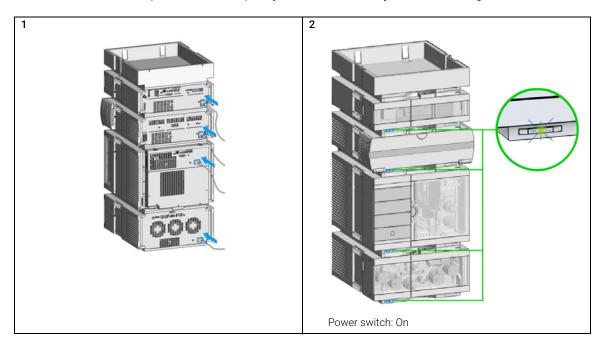
Stainless steel is inert to many common solvents. It is stable in the presence of acids and bases in the pH range specified for standard HPLC (pH 1-12.5). It can be corroded by acids below pH 2.3. In general, the following solvents may cause corrosion and should be avoided with stainless steel:

- Solutions of alkali halides, their respective acids (for example, lithium iodide, potassium chloride, and so on) and aequous solutions of halogenes
- High concentrations of inorganic acids such as nitric acid, sulfuric acid, and
 organic solvents, especially at higher temperatures (if your chromatography
 method allows, replace by phosphoric acid or phosphate buffer which are less
 corrosive to stainless steel).
- Halogenated solvents or mixtures that form radicals and/or acids, for example:

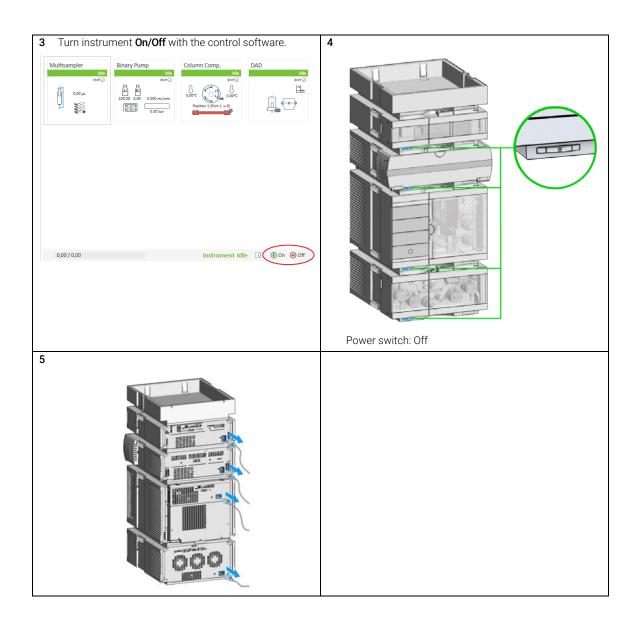
$$2 \text{ CHCl}_3 + \text{O}_2 \rightarrow 2 \text{ COCl}_2 + 2 \text{ HCl}$$

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.

• Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether) such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.

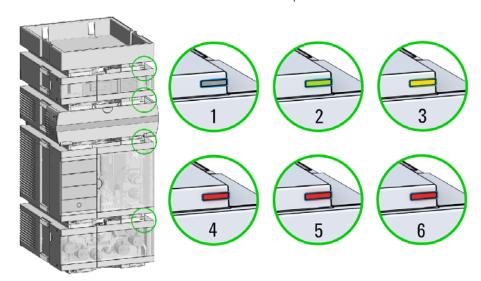

3 Using the Module

Solvent Information


- Solutions of organic acids (acetic acid, formic acid, and so on) in organic solvents. For example, a 1 % solution of acetic acid in methanol will attack steel.
- Solutions containing strong complexing agents (for example, EDTA, ethylene diamine tetra-acetic acid).
- Mixtures of carbon tetrachloride with 2-propanol or THF.

Turn on/off

This procedure exemplarily shows an arbitrary LC stack configuration.


Turn on/off

Status Indicators

This procedure exemplarily shows an arbitrary LC stack configuration.

1 The module status indicator indicates one of six possible module conditions:

Status indicators

- 1. Idle
- 2. Run mode
- 3. Not-ready. Waiting for a specific pre-run condition to be reached or completed.
- 4. Error mode interrupts the analysis and requires attention (for example a leak or defective internal components).
- 5. Resident mode (blinking) for example during update of main firmware.
- 6. Bootloader mode (fast blinking). Try to re-boot the module or try a cold-start. Then try a firmware update.

```
Best Practices 40
Regular Inspections 40
Power up / Shut down 40
Prepare the Fraction Collector 40
Solvent Information 41
Material Information 41
Capillary Color Coding Guide
Install Capillary Connections 47
Setting up the Fraction Collector with the Instrument Control Interface
                                                                          49
Overview 49
Instrument Configuration 49
Fraction Collector User Interface (Dashboard Panel) 51
Method Parameter Settings 53
Advanced Settings 56
Timetable Settings 58
```

This chapter explains the operational parameters of the module.

Best Practices

Best Practices

Regular Inspections

Inspect the inlet/waste tubings and exchange them if they are worn out or show visible signs of damage.

Power up / Shut down

Power up

Check that the robotics is not obstructed.

Shut down

- Remove filled containers from the fraction collector after use.
- Pump a rinse solution through the fraction collector at the end of a run to avoid clogging.
- Use recommended solvents to store the system.

Prepare the Fraction Collector

- Flush the LC system.
- Make sure to have a stable detector baseline.
- Make sure that fraction tubes are empty or that there is at least enough space for the next fraction.

Solvent Information

Observe the following recommendations on the use of solvents.

- Follow the recommendations for avoiding the growth of algae, see the pump manuals.
- Small particles can permanently block capillaries and valves. Therefore, always filter solvents through 0.22 μm filters.
- Avoid or minimize the use of solvents that may corrode parts in the flow path.
 Consider specifications for the pH range given for different materials such as flow cells, valve materials etc. and recommendations in subsequent sections.

Recommended Wash Solvents

- water
- ethanol
- methanol
- water/acid (especially for basic compounds)
- water/base (especially for acidic compounds)
- water/acetonitrile

NOTE

For different wash solvents as mentioned above, verify that the wash solvent is suitable for the silicone wash tubing.

Material Information

Materials in the flow path are carefully selected based on Agilent's experiences in developing highest quality instruments for HPLC analysis over several decades. These materials exhibit excellent robustness under typical HPLC conditions. For any special condition, please consult the material information section or contact Agilent.

Solvent Information

Disclaimer

Subsequent data was collected from external resources and is meant as a reference. Agilent cannot guarantee the correctness and completeness of such information. Data is based on compatibility libraries, which are not specific for estimating the long-term life time under specific but highly variable conditions of UHPLC systems, solvents, solvent mixtures and samples. Information can also not be generalized due to catalytic effects of impurities like metal ions, complexing agents, oxygen etc. Apart from pure chemical corrosion, other effects like electro corrosion, electrostatic charging (especially for non-conductive organic solvents), swelling of polymer parts etc. need to be considered. Most data available refers to room temperature (typically $20-25\,^{\circ}\text{C}$, $68-77\,^{\circ}\text{F}$). If corrosion is possible, it usually accelerates at higher temperatures. If in doubt, please consult technical literature on chemical compatibility of materials.

PEEK

PEEK (Polyether-Ether Ketones) combines excellent properties regarding biocompatibility, chemical resistance, mechanical and thermal stability. PEEK is therefore the material of choice for UHPLC and biochemical instrumentation.

It is stable in the specified pH range (for the Bio-inert LC system: pH 1 - 13, see bio-inert module manuals for details), and inert to many common solvents.

There is still a number of known incompatibilities with chemicals such as chloroform, methylene chloride, THF, DMSO, strong acids (nitric acid > 10 %, sulphuric acid > 10 %, sulfonic acids, trichloroacetic acid), halogenes or aequous halogene solutions, phenol and derivatives (cresols, salicylic acid etc.).

When used above room temperature, PEEK is sensitive to bases and various organic solvents, which can cause it to swell. Under such conditions normal PEEK capillaries are very sensitive to high pressure. Therefore Agilent uses stainless steel cladded PEEK capillaries in bio-inert systems. The use of stainless steel cladded PEEK capillaries keeps the flow path free of steel and ensures pressure stability to at least 600 bar. If in doubt, consult the available literature about the chemical compatibility of PEEK.

Polyimide

Agilent uses semi-crystalline polyimide for rotor seals in valves and needle seats in autosamplers. One supplier of polyimide is DuPont, which brands polyimide as Vespel, which is also used by Agilent.

Polyimide is stable in a pH range between 1 and 10 and in most organic solvents. It is incompatible with concentrated mineral acids (e.g. sulphuric acid), glacial acetic acid, DMSO and THF. It is also degraded by nucleophilic substances like ammonia (e.g. ammonium salts in basic conditions) or acetates.

Solvent Information

Polyethylene (PE)

Agilent uses UHMW (ultra-high molecular weight)-PE/PTFE blends for yellow piston and wash seals, which are used in 1290 Infinity pumps, 1290 Infinity II pumps, the G7104C and for normal phase applications in 1260 Infinity pumps.

Polyethylene has a good stability for most common inorganic solvents including acids and bases in a pH range of 1 to 12.5. It is compatible with many organic solvents used in chromatographic systems like methanol, acetonitrile and isopropanol. It has limited stability with aliphatic, aromatic and halogenated hydrocarbons, THF, phenol and derivatives, concentrated acids and bases. For normal phase applications, the maximum pressure should be limited to 200 bar.

Tantalum (Ta)

Tantalum is inert to most common HPLC solvents and almost all acids except fluoric acid and acids with free sulfur trioxide. It can be corroded by strong bases (e.g. hydroxide solutions > 10 %, diethylamine). It is not recommended for the use with fluoric acid and fluorides.

Stainless Steel (ST)

Stainless steel is inert against many common solvents. It is stable in the presence of acids and bases in a pH range of 1 to 12.5. It can be corroded by acids below pH 2.3. It can also corrode in following solvents:

- Solutions of alkali halides, their respective acids (for example, lithium iodide, potassium chloride, and so on) and aqueous solutions of halogens.
- High concentrations of inorganic acids like nitric acid, sulfuric acid and
 organic solvents especially at higher temperatures (replace, if your
 chromatography method allows, by phosphoric acid or phosphate buffer
 which are less corrosive against stainless steel).
- Halogenated solvents or mixtures which form radicals and/or acids, for example:

$$2 \text{ CHCl}_3 + \text{O}_2 \rightarrow 2 \text{ COCl}_2 + 2 \text{ HCl}$$

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.

• Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, diisopropylether). Such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.

Solvent Information

- Solutions of organic acids (acetic acid, formic acid, and so on) in organic solvents. For example, a 1 % solution of acetic acid in methanol will attack steel.
- Solutions containing strong complexing agents (for example, EDTA, ethylene diamine tetra-acetic acid).
- Mixtures of carbon tetrachloride with 2-propanol or THF.

Titanium (Ti)

Titanium is highly resistant to oxidizing acids (for example, nitric, perchloric and hypochlorous acid) over a wide range of concentrations and temperatures. This is due to a thin oxide layer on the surface, which is stabilized by oxidizing compounds. Non-oxidizing acids (for example, hydrochloric, sulfuric and phosphoric acid) can cause slight corrosion, which increases with acid concentration and temperature. For example, the corrosion rate with 3 % HCl (about pH 0.1) at room temperature is about 13 μ m/year. At room temperature, titanium is resistant to concentrations of about 5 % sulfuric acid (about pH 0.3). Addition of nitric acid to hydrochloric or sulfuric acids significantly reduces corrosion rates. Titanium is sensitive to acidic metal chlorides like FeCl3 or CuCl2. Titanium is subject to corrosion in anhydrous methanol, which can be avoided by adding a small amount of water (about 3 %). Slight corrosion is possible with ammonia > 10 %.

Diamond-Like Carbon (DLC)

Diamond-Like Carbon is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Fused silica and Quartz (SiO₂)

Fused silica is used in Max Light Cartridges. Quartz is used for classical flow cell windows. It is inert against all common solvents and acids except hydrofluoric acid and acidic solvents containing fluorides. It is corroded by strong bases and should not be used above pH 12 at room temperature. The corrosion of flow cell windows can negatively affect measurement results. For a pH greater than 12, the use of flow cells with sapphire windows is recommended.

Gold

Gold is inert to all common HPLC solvents, acids and bases within the specified pH range. It can be corroded by complexing cyanides and concentrated acids like aqua regia.

Solvent Information

Zirconium Oxide (ZrO₂)

Zirconium Oxide is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Platinum/Iridium

Platinum/Iridium is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Fluorinated polymers (PTFE, PFA, FEP, FFKM, PVDF)

Fluorinated polymers like PTFE (polytetrafluorethylene), PFA (perfluoroalkoxy), and FEP (fluorinated ethylene propylene) are inert to almost all common acids, bases, and solvents. FFKM is perfluorinated rubber, which is also resistant to most chemicals. As an elastomer, it may swell in some organic solvents like halogenated hydrocarbons.

TFE/PDD copolymer tubings, which are used in all Agilent degassers except 1322A/G7122A, are not compatible with fluorinated solvents like Freon, Fluorinert, or Vertrel. They have limited life time in the presence of Hexafluoroisopropanol (HFIP). To ensure the longest possible life with HFIP, it is best to dedicate a particular chamber to this solvent, not to switch solvents, and not to let dry out the chamber. For optimizing the life of the pressure sensor, do not leave HFIP in the chamber when the unit is off.

The tubing of the leak sensor is made of PVDF (polyvinylidene fluoride), which is incompatible with the solvent DMF (dimethyl formamide).

Sapphire, Ruby and Al₂O₃-based ceramics

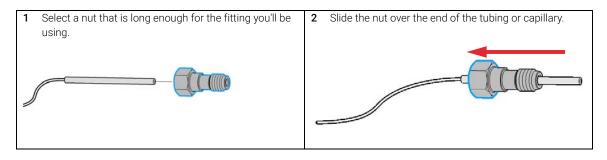
Sapphire, ruby and ceramics based on aluminum oxide Al_2O_3 are inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Capillary Color Coding Guide

Туре		Material		Fitting	Fitting Left/Fitting Right	
Key	Description	Key	Description	Key	Description	
Capillary	Connection capillaries	ST	Stainless steel	W	Swagelok + 0.8 mm Port id	
Loop	Loop capillaries	Ti	Titanium	S	Swagelok + 1.6 mm Port id	
Seat	Autosampler needle seats	PK	PEEK	M	Metric M4 + 0.8 mm Port id	
Tube	Tubing	FS/PK	PEEK-coated fused silica*	E	Metric M3 + 1.6 mm Port id	
Heat	Heat exchanger	PK/ST	Stainless steel-coated PEEK**	U	Swagelok union	
exchanger		PTFE	PTFE	L	Long	
FS Fused silica				X	Extra long	
*Fused silica in contact with solvent			Н	Long head		
**PEEK in contact with solvent			contact with solvent	G	Small head SW 4 mm	
				N	Small head SW 5 mm	
					Fingertight	
The type gives some indication on the primary function, like a loop or a connection capillary.				٧	1200 bar	
The material indicates which raw material is used.				В	Bio	
The fitting left/right indicate which fitting is used on both ends of the capillary.			Р	PEEK		

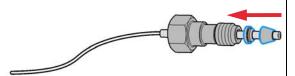
The color of your capillary will help you	Color-coding key for Agilent capillary tubing			
quickly identify the capillary id – see the chart to the right for reference.	Internal Diameter in mm	Colo	r code	
	0.015		Orange	
	0.025		Yellow	
	0.05		Beige	
	0.075		Black	
	0.1		Purple	
	0.12		Red	
	0.17		Green	
	0.20/0.25		Blue	
	0.3		Grey	
	0.50		Bone White	

Figure 6 Syntax for capillary description

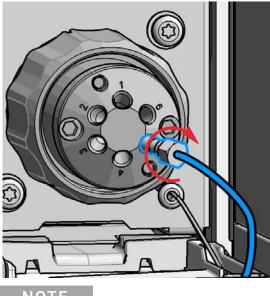

Install Capillary Connections

Install Capillary Connections

For correct installation of capillary connections of the sampler it's important to choose the correct fittings, see "Capillary Color Coding Guide" on page 46.

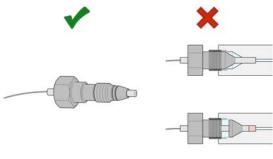

Parts required	p/n	Description
	5067-4650	Capillary ST 0.12 mm x 150 mm SL/SX
	5067-4651	Capillary ST 0.12 mm x 280 mm SL/SX
	5067-4720	Capillary ST 0.17 mm x 150 mm SL/SX
	5067-4722	Capillary ST 0.17 mm x 280 mm SL/SX
	5065-4454	Fitting screw long 10/pk Quantity depends on configuration of the module (number of connections to the
	5067-4720 5067-4722	Capillary ST 0.17 mm x 150 mm SL/SX Capillary ST 0.17 mm x 280 mm SL/SX Fitting screw long 10/pk

The capillaries mentioned above are examples only.



Install Capillary Connections

3 Carefully slide the ferrule components on after the nut and then finger-tighten the assembly while ensuring that the tubing is completely seated in the bottom of the end fitting.


Use a column or injection valve to gently tighten the fitting which forces the ferrule to seat onto the tubing or capillary.

NOTE

Don't overtighten. Overtightening will shorten the lifetime of the fitting.

5 Loosen the nut and verify that the ferrule is correctly positioned on the tubing or capillary.

NOTE

The first time that the swagelock fitting is used on a column or an injection valve, the position of the ferrule is permanently set. If changing from a column or an injection valve to another, the fitting may leak or decrease the quality of the separation by contributing to band broadening.

Setting up the Fraction Collector with the Instrument Control Interface

Setting up the Fraction Collector with the Instrument Control Interface

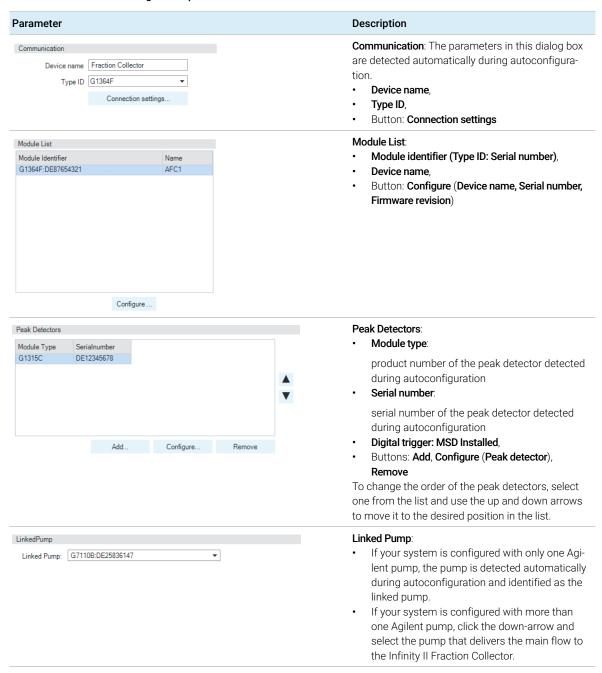
Overview

Parameters described in following sections are offered by the instrument control interface and can usually be accessed through Agilent instrument control software. For details, please refer to manuals and online help of respective user interfaces.

In order to setup or change the configuration parameters of your fraction collector select **More Fraction Collector> Configuration** from the Instrument menu or right-click on the fraction collector icon in the graphical user interface.

Instrument Configuration

Use the **Instrument Configuration** dialog box to examine and, if necessary, modify your instrument configuration. The **Configurable Modules** panel contains a list of all modules available for configuration. The **Selected Modules** panel contains the list of configured modules.


Auto Configuration: Under **Communication settings**, select either the **Host Name** option or the **IP address** option and enter the appropriate value for the host computer to enable automatic detection of the hardware configuration. The system configures the instrument automatically with no further manual configuration necessary.

The Fraction Collector configuration parameters are in four sections:

- Communication
- Module List
- Peak Detectors
- Linked Pump

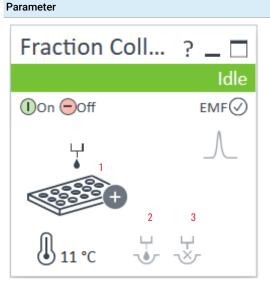

Setting up the Fraction Collector with the Instrument Control Interface

Table 3 Instrument configuration parameters

Fraction Collector User Interface (Dashboard Panel)

Table 4 Fraction Collector User Interface

Description

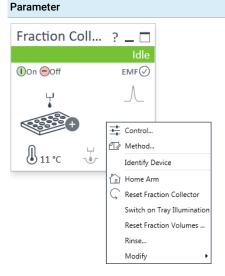
Module graphic

The items in the Fraction Collector graphic have the following meaning and function:

- 1: Denotes collection to a fraction location. The current collection location is shown to the right of the graphic.
- 2: Starts manual fraction collection. This button is active only during a run where fraction collection is enabled.
- 3: Stops manual fraction collection. This button is active only during a run where fraction collection is enabled.

Instrument Actuals

The following fraction collector actuals are displayed:


Current location:

The fraction location currently in use.

Fraction mode:

The current fraction mode.

Table 4 Fraction Collector User Interface

Description

Context Menu

The context menu of the dashboard panel contains the following commands:

Control⁻

Displays the Fraction Collector's Control dialog box.

Method:

Displays the Fraction Collector's Method Setup dialog box.

Identify Device:

Causes the LED on the front of the module to blink for a few seconds.

Home Arm:

Moves the robot arm to its home position.

Reset Fraction Collector:

Sends a reset signal to fraction collector. During the reset, the fraction collector is in a Not Ready state.

Switch on Tray Illumination

Toggles the illumination of the fraction collection area, on or off.

Reset Fraction Volumes:

Displays the **Reset Fraction Volumes** dialog box, which allows you to reset the fill volumes currently stored in the device.

Displays the Rinse dialog box, which allows you to specify the rinse parameters.

Modify > Wellplate Assignment:

Displays the **Modify Wellplate Assignment** dialog box, which allows you to view and (if necessary) change the wellplate assignment of the containers.

Modify > Collection Settings:

Displays the **Modify Collection Settings** dialog box, which allows you to select the collection order and forbidden locations.

Modify > Detector Delay Volumes:

Displays the Modify Detector Delay Volumes dialog box, which allows you to view and (if necessary) modify the delay volumes stored in your device.

Modify > Linked Pump:

Displays the Modify Linked Pump dialog box, which allows you to view and (if necessary) change the pump that delivers the flow to vour device.

Modify > Needle and Tubing:

Displays the Modify Needle and Tubing dialog box which allows you to register changes to the needle and/or tubing kit in the module's firmware.

- Modify > Needle Position
- Modify > Vessel Dimensions

Method Parameter Settings

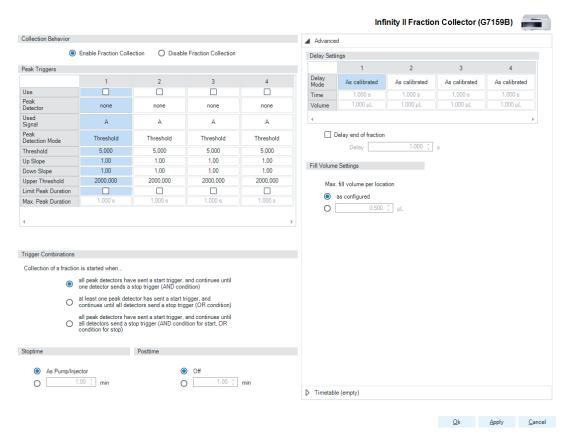


Figure 7 Method settings

The Fraction Collector method setup parameters are in eight sections:

- Collection Behavior
- Peak Triggers
- Trigger Combinations
- Stoptime
- Posttime
- Advanced
- Timetable
- Fraction Preview

Table 5 **Method Parameter Settings**

Parameter					Description
Collection Behavior © Enable Fraction Collection O Disable Fraction Collection				Collection Behavior Use this setting to either enable or disable the fraction collection parameters of the instrument.	
Peak Triggers Use Peak Detector Used Signal Peak Detection Mode Threshold Up Slope Down Slope Upper Threshold Limit Peak Duration Max. Peak Duration	1	2	3	4	Peak Triggers Use the Peak Triggers table to specify the detection settings of the peak detectors available in your system. • Peak Detection Mode The following detection modes are available: • Off (The peak detector is not used) • Slope (Detects peaks based on slope values only) Limits: Up slope: 0.01 – 10000 units/s, Down slope: 0.01 – 10000 units/s • Threshold (Detects peaks based on threshold values only) Limits: Threshold: -10000 – 10000 units, Upper threshold: 0.01 – 10000 units • Threshold and Slope (Detects peaks based on both threshold and slope values) • Max Peak Duration • You can Limit Peak Duration to stop the
					fraction collection in cases where the bas line drifts and the signal does not drop below the specified threshold value.

Limits: 1 – 10000 s

Table 5 **Method Parameter Settings**

Parameter	Description
Trigger Combinations Collection of a fraction is started when all peak detectors have sent a start trigger, and continues until one detector sends a stop trigger (AND condition) at least one peak detector has sent a start trigger, and continues until all detectors send a stop trigger (OR condition) all peak detectors have sent a start trigger, and continues until all detectors send a stop trigger (AND condition for start, OR condition for stop)	Trigger Combinations Use the Trigger Combinations to specify how multiple peak triggers are combined to start or stop Fraction Collection. You can choose that: Collection of a fraction is started when all peak detectors have sent a start trigger, and continues until one detector sends a stop trigger (AND condition) Collection of a fraction is started when at least one peak detector has sent a start trigger, and continues until all detectors send a stop trigger (OR condition) Collection of a fraction is started when all peak detectors have sent a start trigger, and continues until all detectors send a stop trigger (AND condition for start, OR condition for stop)
Stoptime As Pump/Injector 1,00 : min	Stoptime Enables you to set a time at which the fraction collector stops an analysis. If the fraction collector is used with other Agilent Modular LC modules, the fraction collector stoptime stops the fraction collector only and does not stop any other modules. Limits: 0.01 – 99999.00 min or As Pump/Injector
Posttime Off 1.00 : min	Posttime You can set the Posttime so that your fraction collector remains in the post-run state during the Post time to delay the start of the next analysis. When the Posttime has elapsed, the fraction collector is ready for the next analysis. Limits: 0.01 – 99999.00 min or Off (0.0 min)
Advanced	See "Advanced Settings" on page 56
Timetable	See "Timetable Settings" on page 58
Fraction Preview	Use the Fraction Preview screen to test the fraction collection parameters against one or more reference signals. You can also use the Fraction Preview to optimize the fraction collection parameters interactively.

4

Method Parameter Settings

Advanced Settings

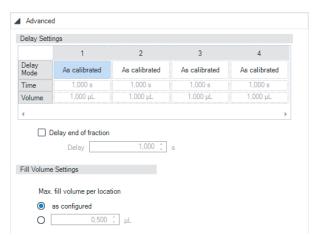
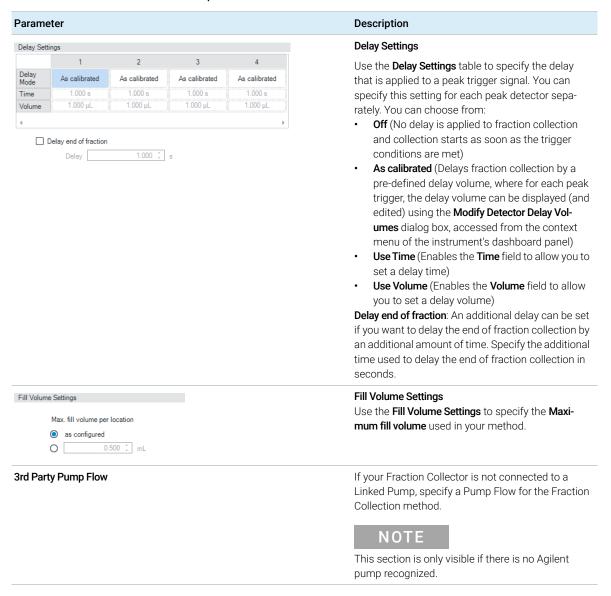



Figure 8 Advanced settings

The Fraction Collector method setup advanced parameters are in three sections, depending on the configuration:

- Delay Settings
- · Fill Volume Settings
- 3rd Party Pump Flow (only visible if there is no Agilent pump recognized.)

Table 6 Advanced Parameters Description

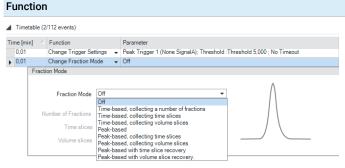
Method Parameter Settings

Timetable Settings

NOTE

A timetable entry is crucial to enable any fraction collection.

Figure 9 Timetable settings

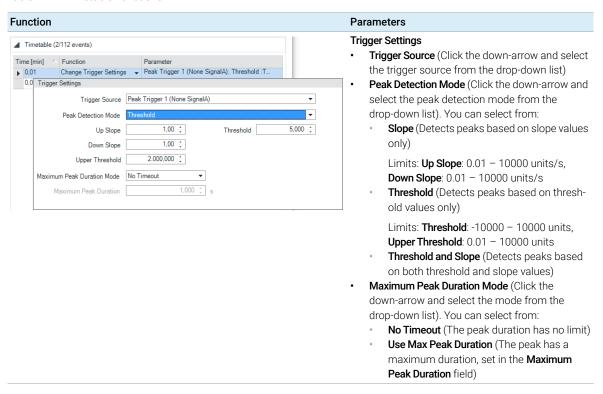

Use the Timetable to program changes in the fraction collector parameters during the analysis by entering a time in the Time field and appropriate values in the following fields of the timetable. The values in the fraction collector timetable change instantaneously at the time defined in the timetable.

The following parameters can be changed:

- Fraction Mode
- Trigger Settings

Table 7 Timetable Functions

4


Parameters

Fraction Mode

- Off (Turns off the current fraction collection, where you use Off to turn off fraction collection at the end of the run if you have not specified a Stoptime)
- Time-based, collecting a number of fractions
 (Fractions are collected between this time and the
 next change of fraction mode or Off, where you
 specify the number of fractions to collect in the
 Number of Fractions field)
- Time-based, collecting time slices (Time-slice fractions are collected between this time and the next change of fraction mode or Off. where you specify the duration of the time-slices to collect in the Time slices field)
- Time-based, collecting volume slices (Volume-slice fractions are collected between this time and the next change of fraction mode or Off, where you specify the volume of the fractions to collect in the Volume slices field)
- Peak-based (Fractions are collected based on the peak detection settings)
- Peak-based, collecting time slices (Time-slice fractions are collected during the elution of a peak, based on the peak detection settings, where you specify the duration of the time-slices to collect in the Time slices field)
- Peak-based, collecting volume slices (Volume-slice fractions are collected during the elution of a peak, based on the peak detection settings, where you specify the volume of the fractions to collect in the Volume slices field)
- Peak-based with time-slice recovery (Time-slice fractions are collected between this time and the next change of fraction mode or Off, where when the peak detector encounters a peak, the peak is collected independently of the time slices, specified by the duration of the time-slices to collect in the Time slices field)
- Peak-based with volume-slice recovery (Volume-slice fractions are collected between this time and the next change of fraction mode or Off, where when the peak detector encounters a peak, the peak is collected independently of the volume slices, specified by the volume of the fractions to collect in the Volume slices field)

Method Parameter Settings

Table 7 Timetable Functions

NOTE

In order to collect fractions, three criteria are required:

- 1 Collection Behavior must be enabled.
- 2 At least one Peak Trigger channel must be selected.
- **3** At least one Timetable event must be specified, to Change Fraction Mode to one of the Time Based or Peak Based modes

5 Troubleshooting and Diagnostics

User Interfaces 62 Agilent Lab Advisor Software 63

This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.

Troubleshooting and Diagnostics

User Interfaces

5

User Interfaces

- Depending on the user interface, the available tests and the screens/reports may vary.
- Preferred tool should be Agilent Lab Advisor Software, see "Agilent Lab Advisor Software" on page 63.
- The Agilent OpenLAB ChemStation C.01.03 and above do not include any maintenance/test functions.
- Screenshots used within these procedures are based on the Agilent Lab Advisor Software.

Agilent Lab Advisor Software

The Agilent Lab Advisor Software is a standalone product that can be used with or without a chromatographic data system. Agilent Lab Advisor helps to manage the lab for high-quality chromatographic results by providing a detailed system overview of all connected analytical instruments with instrument status, Early Maintenance Feedback counters (EMF), instrument configuration information, and diagnostic tests. By the push of a button, a detailed diagnostic report can be generated. Upon request, the user can send this report to Agilent for a significantly improved troubleshooting and repair process.

The Agilent Lab Advisor software is available in two versions:

- Lab Advisor Basic
- Lab Advisor Advanced

Lab Advisor Basic is included with every Agilent 1200 Infinity Series and Agilent InfinityLab LC Series instrument.

The Lab Advisor Advanced features can be unlocked by purchasing a license key, and include real-time monitoring of instrument actuals, all various instrument signals, and state machines. In addition, all diagnostic test results, calibration results, and acquired signal data can be uploaded to a shared network folder. The Review Client included in Lab Advisor Advanced allows to load and examine the uploaded data no matter on which instrument it was generated. This makes Data Sharing an ideal tool for internal support groups and users who want to track the instrument history of their analytical systems.

The tests and diagnostic features that are provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details, refer to the Agilent Lab Advisor software help files.

6 Error Information

```
What Are Error Messages
General Error Messages
Timeout 66
Shutdown 67
Remote Timeout 68
Lost CAN Partner 68
Leak Sensor Short 69
Leak Sensor Open 69
Compensation Sensor Open 70
Compensation Sensor Short 70
Fan Failed 71
Leak 71
Open Cover 72
Module Error Messages
                             73
Exhaust Fan Failed 73
Front Door Error 73
Side Door Error 74
Arm Movement Failed or Arm Movement Timeout 75
Needle to Needle Rinse / Funnel Position Failed 76
Needle Carrier Failed 77
Missing Vial or Missing Well-plate 77
Calib delay vol two peaks 78
Valve Switch Failed 78
Adapter Required 79
Funnel Not Supported 79
Pusher Wrong or Defect 80
Wrong or Missing Needle (Analytical Scale) 80
Initialization Failed 81
Vessel Stuck to Needle 81
Cluster Partner Lost During Analysis 82
Movement to Next Position Failed 82
Could Not Find a Valid Next Position 83
```

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

What Are Error Messages

What Are Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the module logbook.

If an error occurs outside a method run, other modules will not be informed about this error. If it occurs within a method run, all connected modules will get a notification, all LEDs get red and the run will be stopped. Depending on the module type, this stop is implemented differently. For example, for a pump the flow will be stopped for safety reasons. For a detector, the lamp will stay on in order to avoid equilibration time. Depending on the error type, the next run can only be started, if the error has been resolved, for example liquid from a leak has been dried. Errors for presumably single time events can be recovered by switching on the system in the user interface.

Special handling is done in case of a leak. As a leak is a potential safety issue and may have occurred at a different module from where it has been observed, a leak always causes a shutdown of all modules, even outside a method run.

In all cases, error propagation is done via the CAN bus or via an APG/ERI remote cable (see documentation for the APG/ERI interface).

General Error Messages

General error messages are generic to all Agilent series HPLC modules and may show up on other modules as well.

Timeout

Error ID: 0062

The timeout threshold was exceeded.

Pr	obable cause	Suggested actions
1	The analysis was completed successfully, and the timeout function switched off the module as requested.	Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.
2	A not-ready condition was present during a sequence or multiple-injection run for a period longer than the timeout threshold.	Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Shutdown

Error ID: 0063

An external instrument has generated a shutdown signal on the remote line.

The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

Pr	obable cause	Suggested actions
1	Leak detected in another module with a CAN connection to the system.	Fix the leak in the external instrument before restarting the module.
2	Leak detected in an external instrument with a remote connection to the system.	Fix the leak in the external instrument before restarting the module.
3	Shut-down in an external instrument with a remote connection to the system.	Check external instruments for a shut-down condition.
4	The degasser failed to generate sufficient vacuum for solvent degassing.	Check the vacuum degasser for an error condition. Refer to the <i>Service Manual</i> for the degasser or the pump that has the degasser built-in.

Remote Timeout

Error ID: 0070

A not-ready condition is still present on the remote input. When an analysis is started, the system expects all not-ready conditions (for example, a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

Pr	obable cause	Suggested actions
1	Not-ready condition in one of the instruments connected to the remote line.	Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.
2	Defective remote cable.	Exchange the remote cable.
3	Defective components in the instrument showing the not-ready condition.	Check the instrument for defects (refer to the instrument's documentation).

Lost CAN Partner

Error ID: 0071

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

Probable cause	Suggested actions		
1 CAN cable disconnected.	Ensure all the CAN cables are connected cor- rectly.		
	Ensure all CAN cables are installed correctly.		
2 Defective CAN cable.	Exchange the CAN cable.		
3 Defective main board in another module.	Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.		

Leak Sensor Short

Error ID: 0082

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

Pr	obable cause	Suggested actions
1	Defective leak sensor.	Please contact your Agilent service representative.
2	Leak sensor incorrectly routed, being pinched by a metal component.	Please contact your Agilent service representative.

Leak Sensor Open

Error ID: 0083

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

Pr	obable cause	Suggested actions
1	Leak sensor not connected to the main board.	Please contact your Agilent service representative.
2	Defective leak sensor.	Please contact your Agilent service representative.
3	Leak sensor incorrectly routed, being pinched by a metal component.	Please contact your Agilent service representative.

Compensation Sensor Open

Error ID: 0081

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

Pr	obable cause	Suggested actions
1	Defective main board.	Please contact your Agilent service representative.

Compensation Sensor Short

Error ID: 0080

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

Probable cause	Suggested actions
1 Defective main board.	Please contact your Agilent service representative.

Fan Failed

Error ID: 0068

The cooling fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain limit for a certain length of time, the error message is generated.

Depending on the module, assemblies (e.g. the lamp in the detector) are turned off to assure that the module does not overheat inside.

Probable cause	Suggested actions
1 Fan cable disconnected.	Please contact your Agilent service representative.
2 Defective fan.	Please contact your Agilent service representative.
3 Defective main board.	Please contact your Agilent service representative.

Leak

Error ID: 0064

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the main board.

Pr	obable cause	Suggested actions
1	Loose fittings.	Ensure all fittings are tight.
2	Broken capillary.	Exchange defective capillaries.

Open Cover

Error ID: 0205

The top foam has been removed.

Probable cause	Suggested actions
1 Foam not activating the sensor.	Please contact your Agilent service representative.
2 Defective sensor or main board.	Please contact your Agilent service representative.

Module Error Messages

Exhaust Fan Failed

Error ID: 4456, 4457

The exhaust fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain value the error message is generated and the module shuts down.

Probable cause		Suggested actions
1	Fan cable disconnected.	Please contact your Agilent service representative.
2	Defective fan.	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

Front Door Error

Error ID: 4750

The front door and/or the SLF board are damaged.

Probable cause		Suggested actions
1	The flat ribbon cable from MTP main board to the SLF board is not connected correctly.	Please contact your Agilent service representative.
2	The sensor on the SLF board is defective.	Please contact your Agilent service representative.
3	The door is bent or the magnet is misplaced/broken.	Change the side door.
4	Defective MTP main board.	Please contact your Agilent service representative.

Side Door Error

Error ID: 4750

The side door and/or the MTP board are damaged. This error message is not displayed before the initilization is finished.

Probable cause		Suggested actions
1	The side door is not installed.	Install the side door.
2	The door is bent or the magnet is misplaced/broken.	Change the side door.
3	The sensor on the MTP board is defective.	Please contact your Agilent service representative.
4	Excessive weight on top of the fraction collector (see also "Initialization Failed" on page 81)	Check stack configuration and reduce weight on top of the fraction collector.

Arm Movement Failed or Arm Movement Timeout

Error ID: 4002

The transport assembly was unable to complete a movement in one of the axes.

The processor defines a certain time window for the successful completion of a movement in any particular axis. The movement and position of the transport assembly is monitored by the encoders on the stepper motors. If the processor does not receive the correct position information from the encoders within the time window, the error message is generated.

Axes identification:

- Arm Movement 0 Failed: X-axis.
- Arm Movement 1 Failed: Z-axis.
- Arm Movement 2 Failed: Theta (needle carrier rotation).

Pr	obable cause	Suggested actions
1	Mechanical obstruction.	Ensure unobstructed movement of the transport assembly.
2	High friction in the transport assembly.	Please contact your Agilent service representative.
3	Defective motor assembly.	Please contact your Agilent service representative.
4	Defective sample transport assembly flex board.	Please contact your Agilent service representative.
5	Defective main board.	Please contact your Agilent service representative.

Needle to Needle Rinse / Funnel Position Failed

Error ID: 4955, 4980, 4981-4990

The needle failed to reach the needle rinse / funnel position.

The position of the needle is monitored by a position encoder on the needle carrier. If the needle fails to reach the end point, or if the encoder fails to recognize the needle carrier movement, the error message is generated.

Pr	obable cause	Suggested actions
1	Bad sample transport unit alignment	Do a self-alignment
2	Bent needle.	Check and exchange the needle assembly if necessary.
3	Missing needle.	Check and exchange the needle assembly if necessary.
4	Blocked rinse or funnel position.	Clean or change the funnel or rinse port assembly if necessary.
5	Defective needle carrier assembly.	Exchange the needle carrier assembly.
6	Disconnected needle carrier connector.	Connect needle carrier connector correctly.
7	Defective MTP main board.	Please contact your Agilent service representative.

Needle Carrier Failed

Error ID:

The needle carrier on the transport unit assembly failed to move correctly.

Probable cause		Suggested actions
1	Defective position sensor in the needle carrier assembly.	Exchange the needle carrier assembly.
2	Bad needle carrier positioning in X or Theta.	Perform a self-alignment.
3	Disconnected needle carrier connector.	Connect needle carrier connector correctly.
4	Defective MTP main board.	Please contact your Agilent service representative.
5	Defective Z-motor.	Please contact your Agilent service representative.

Missing Vial or Missing Well-plate

Error ID:

No vial or well-plate was found in the position defined in the method or sequence.

When the needle carrier moves to a vial or well-plate and the needle is lowered into the vial or well-plate, the position of the needle is monitored by an encoder behind the vial pusher. If no vial or well-plate is present, the encoder detects an error and the message "missing vial or well plate" is generated.

Probable cause		Suggested actions
1	No vial in the position defined in the method or sequence.	Install the sample vial in the correct position, or edit the method or sequence accordingly.
2	Defective needle carrier assembly.	Exchange the needle carrier assembly.
3	Defective transport unit assembly flex board.	Please contact your Agilent service representative.
4	Defective MTP main board.	Please contact your Agilent service representative.

Calib delay vol two peaks

Error ID: 4759

Two peaks have been detected during the delay calibration.

Pr	obable cause	Suggested actions
1	Wrong sample has been used for the delay calibration.	Check method and delay calibration procedure.
2	Wrong method has been used for the delay calibration.	Check method and delay calibration procedure.
3	Air bubbles are in the flow path.	Check flow path for leaks and air bubbles.

Valve Switch Failed

Error ID: 4959

If multiple fraction collectors are configured, an external valve is used to switch between the fraction collectors.

The error message is displayed if the external valve failed to switch to next position.

Probable cause		Suggested actions	
1	Valve is blocked. Possible if eluents with highly concentrated electrolytes are used.	Purge valve to dissolve crystals.	
2	Power cord for the valve is not connected.	Check power cord connection.	
3	Valve drive or valve electronics are defective.	Synchronize the valve.Exchange the valve.	

Adapter Required

Error ID: 4961

The wellplate adapter is required for the following operation.

Probable cause		Suggested actions
1	Wellplate adapter not attached.	Attach wellplate adapter.
2	Cable between needle carrier assembly to transport unit assembly disconnected or defective.	Check cable between needle carrier assembly to transport unit assembly.
3	Needle carrier assembly defective.	Exchange needle carrier assembly.

Funnel Not Supported

Error ID: 4962

Funnels are only supported for the analytical/bio-inert fraction collector. Consequently the error message is displayed, if a tray with funnels is configured for the preparative fraction collector.

Probable cause		Suggested actions	
1	Fraction collector type and tray not compatible.	•	Check the tray configuration in your CDS. Funnel trays are only supported for the analytical scale fraction collector.
		•	Check the system configuration in your CDS, and verify that an analytical scale fraction collector is configured.

Pusher Wrong or Defect

Error ID: 4965

Pr	obable cause	Suggested actions
1	Wellplate adapter not attached.	Attach wellplate adapter.
2	Needle carrier assembly defective.	Exchange needle carrier assembly.

Wrong or Missing Needle (Analytical Scale)

Error ID: 4966

Probable cause		Suggested actions	
1	No needle installed.	Check which needle has been installed.	
2	Short needle for high flow rates installed, but the wellplate adapter hasn't been removed.	Remove wellplate adapter if short needle for semi-preparative operation is installed.	

Initialization Failed

Error ID: 4950

The fraction collector failed to complete initialization correctly. The fraction collector initialization procedure moves the needle arm and transport assembly to their home positions in a predefined routine. During initialization, the processor monitors the position sensors and motor encoders to check for correct movement. If one or more of the movements is not successful, or is not detected, the error message is generated.

Probable cause		Suggested actions	
1	Transport unit not aligned correctly	Perform an auto-alignment.	
2	Mechanical obstruction.	Ensure unobstructed movement of the transport assembly.	
3	Defective transport assembly flex board.	Please contact your Agilent service representative.	
4	Defective MTP main board.	Please contact your Agilent service representative.	
5	Excessive weight on top of the fraction collector (see also "Side Door Error" on page 74)	Check stack configuration and reduce weight on top of the fraction collector.	

Vessel Stuck to Needle

Error ID: 4453

The vessel sticks to the needle when the needle moves up.

Probable cause		Suggested actions	
1	Closing mat to rigid/thick.	Check that the closing mat is not too thick.	
2	Bad X or Theta positioning and the needle sticks into the wall between two holes.	Please contact your Agilent service representative.	
3	Defective encoder on the needle carrier assembly.	Please contact your Agilent service representative.	

Cluster Partner Lost During Analysis

Error ID:

There was a problem with the inter module communication.

Probable cause		Suggested actions	
1	Disconnected or defective CAN cable.	Ch	eck the interconnection between the modules.
2	Disconnected or defective 24V-CAN-DC-OUT cable for an external valve.		connect the UIB / Valve. Start a test analy- r/run.
3	Defective UIB, external Valve or MTP board.	•	Switch power off / on (complete system off, then on). Start a test analysis / run.
		•	Please contact your Agilent service representative.

Movement to Next Position Failed

Error ID: 4957

The transport mechanism detected an unexpected situation during the movement to the next fraction position.

Pr	obable cause	Suggested actions
1	Mismatch between tray configuration and the loading of the trays, e.g. 4 well plates are configured in the UI, but only three are loaded, or shallow plates are configured, but deep well-plates are used, or tube height doesn't match the configuration.	Check the configuration and the loading of the tray.

Could Not Find a Valid Next Position

Error ID: 4958

There has been more fractions than fraction positions.

Probable cause		Suggested actions	
1	Unexpected number of fractions.	 If possible use a tray with more positions. Add an additional fraction collector to the system. 	
2	Start of an analysis / sequence / run without changing of the tray of the previous run.	Ensure that there are enough fraction positions for the complete analysis / sequence / run.	

7 Maintenance

```
Introduction to Maintenance 85

Warnings and Cautions 86

Cleaning the Module 87

Overview of Maintenance 88

Replace the Inlet/Waste Tubings (Preparative) 89

Replace the Valve to Needle Tubing (Preparative) 94

Exchange the Preparative Needle Assembly 97

Exchange the Needle/Capillary Carrier Assembly (Preparative) 100

Exchange the Diverter Valve 103

Exchange the Internal Tray 106

Repair or Exchange a Funnel of the Internal Tray 108

Exchange the Leak Sensor 110

Replace the Module Firmware 112
```

This chapter describes the maintenance of the module.

Introduction to Maintenance

The module is designed for easy maintenance. Maintenance can be done from the front with module in place in the system.

There are no serviceable parts inside.

Do not open the module.

Warnings and Cautions

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- ▼ The volume of substances should be reduced to the minimum required for the analysis.
- Do not operate the instrument in an explosive atmosphere.

WARNING

Electrical shock

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened.

- Do not remove the cover of the module.
- Only certified persons are authorized to carry out repairs inside the module.

WARNING

Personal injury or damage to the product

Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations.

Use your Agilent products only in the manner described in the Agilent product user guides.

CAUTION

Safety standards for external equipment

If you connect external equipment to the instrument, make sure that you only use accessory units tested and approved according to the safety standards appropriate for the type of external equipment. 7

Cleaning the Module

Cleaning the Module

To keep the module case clean, use a soft cloth slightly dampened with water, or a solution of water and mild detergent.

WARNING

Liquid dripping into the electronic compartment of your module can cause shock hazard and damage the module

- ✓ Do not use an excessively damp cloth during cleaning.
- ✓ Drain all solvent lines before opening any connections in the flow path.

Overview of Maintenance

The procedures described in this section can be done with the fraction collector in place in the stack. These procedures can be done on a more frequent basis.

 Table 8
 Simple repair procedures (Preparative Fraction Collector)

Procedure	Typical Frequency	Notes	
Replacing the inlet / waste tubings	When worn out, when showing visual signs of damage, typically once per year.	See "Replace the Inlet/Waste Tubings (Preparative)" on page 89	
Replacing the valve to needle tubings	When worn out, when show- ing visual signs of damage, typically once per year	See "Replace the Valve to Nee- dle Tubing (Preparative)" on page 94	
Exchanging the needle assembly	When needle shows indication of damage or blockage	See "Exchange the Preparative Needle Assembly" on page 97	
Exchanging the needle/capillary carrier assembly	When the needle carrier is defective	See "Exchange the Needle/Cap- illary Carrier Assembly (Preparative)" on page 100	
Exchanging the diverter valve	When defective (internal / external leak, valve not switching any more)	See "Exchange the Diverter Valve" on page 103	
Exchanging the internal tray	When flow delay sensor defective	See "Exchange the Internal Tray" on page 106	
Repairing or exchanging a funnel of the internal tray or funnel tray	When defective (leaky, blocked or contaminated)	See "Repair or Exchange a Fun- nel of the Internal Tray" on page 108	
Exchanging the leak sensor	When defective	See "Exchange the Leak Sensor" on page 110	

Replace the Inlet/Waste Tubings (Preparative)

When

- · When contaminated, worn out or visibly damaged
- Typically once every year

Parts required

p/II	Description
G1364-68605	Tubing Kit 40 – 100 mL/min, 1.2 mm ID
	Standard tubing kit for Preparative Fraction Collector
G1364-68603	Tubing Kit 4 – 8 mL/min, 0.5 mm ID (OPTIONAL)
G1364-68604	Tubing Kit 15 – 40 mL/min, 0.8 mm ID (OPTIONAL)
	G1364-68603

Preparations

- Position the transport unit of the fraction collector in the **Home** position.
- Remove all installed trays from the tray base.
- Position the transport unit of the fraction collector in the **Change Parts** position.
- Turn OFF the instrument.
- Remove the rear end of the fraction collector's waste tubing from the waste container, unscrew
 the front end of the fraction collector's inlet tubing from the flow cell of the detector.

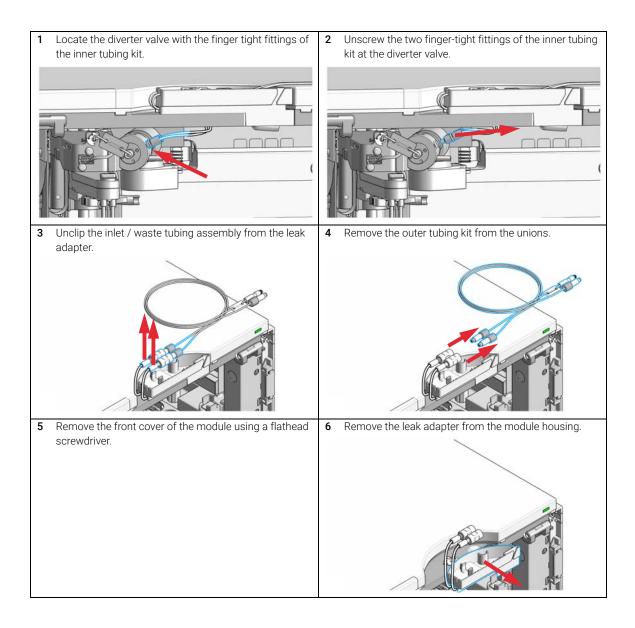
WARNING

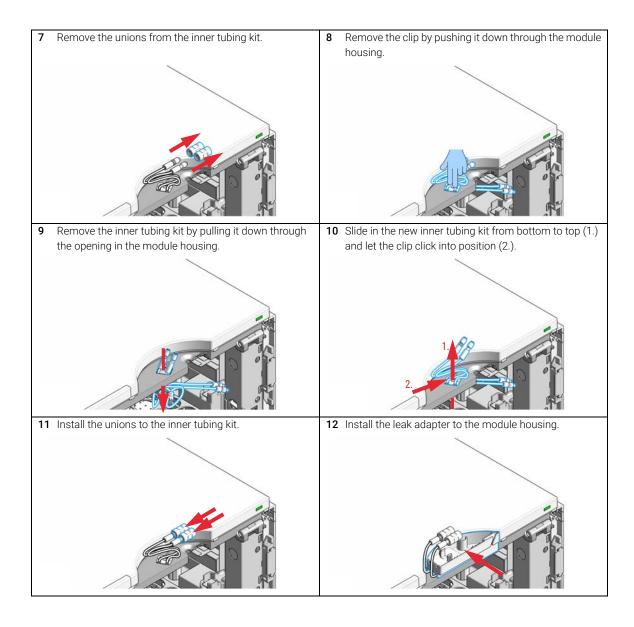
Personal injury

Risk of personal injury caused by the needle arm movement.

✓ Keep fingers away from the needle area.

CAUTION


Liquid spills or fraction losses

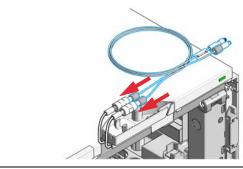

Worn or damaged tubings can cause potential spills or lead to fraction losses.

- Explicitly follow the described installation procedures to maximize the lifetime of inlet / waste tubing assembly and the valve to needle tubing, and to avoid potential spills or fraction losses.
- Regularly inspect the tubings and exchange them if they are worn out or show visible signs of damage.

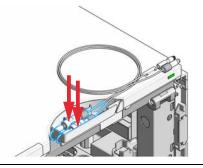
NOTE

Connect the tubings as described in order to maximize their lifetime and operating security.

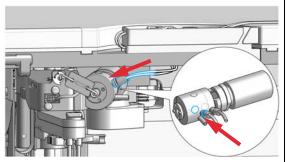
7

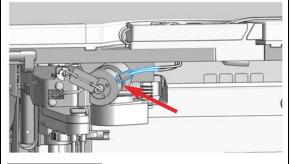

13 Install the front cover back onto the module.

14 Connect the outer tubing kit to the unions.


NOTE

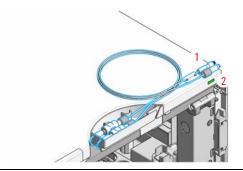
The open end of the inlet tubing can be cut to the required length and connected with the fitting in the kit to the Fraction Collector Inlet Union.


Inlet and outlet tubing are labeled with IN and OUT.


15 Clip the inlet / waste tubing assembly into the leak adapter.

16 A color coded ring on one of the tubings and the valve body indicates, which tubing belongs to which port.

17 Connect the finger-tight fittings of the inner tubing kit to the ports of the diverter valve. The tubings must run into the ports of the diverter valve in horizontal, parallel lines.


NOTE

The tubings must not be bent or twisted.

18 Connect the inlet tubing (1, label IN) to the flow cell of the detector. Insert the outlet tubing (2, label OUT) into the waste container.

NOTE

The inlet tubing has a pre swaged metal fitting which has to be connected to the flow cell with an adapter or directly on the pressure relief valve.

Next Steps:

- 19 Re-install the tray(s) in the tray base.
- 20 Start the instrument.
- 21 Close the front cover.

Replace the Valve to Needle Tubing (Preparative)

When

- · When contaminated, worn out or visibly damaged
- Typically once every year

Tools required

p/n Description

8710-1534 Wrench, open end, 4 mm

8710-0510 Open-end wrench 1/4 - 5/16 inch

Parts required

p/n

Description

G1364-68605

Tubing Kit 40 - 100 mL/min, 1.2 mm ID

Preparations

- Position the transport unit of the fraction collector in the Home position.
- Remove all installed trays from the tray base.
- Position the transport unit of the fraction collector in the Change Parts position and turn off the instrument.
- It might be more convenient to remove the needle from its carrier before unscrewing the needle tubing.

WARNING

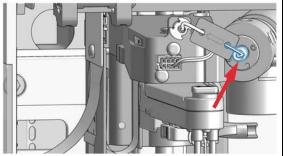
Personal injury

Risk of personal injury caused by the needle arm movement.

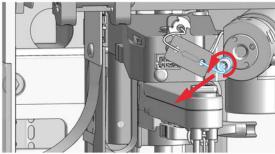
✓ Keep fingers away from the needle area.

CAUTION

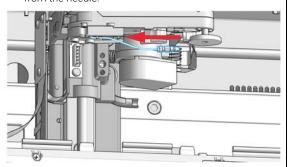
Liquid spills or fraction losses

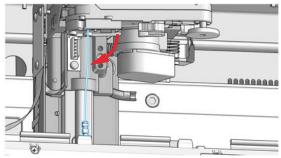

Worn or damaged tubings can cause potential spills or lead to fraction losses.

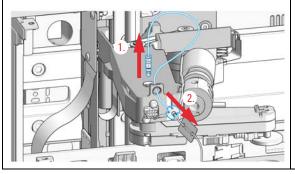
- Explicitly follow the described installation procedures to maximize the lifetime of inlet / waste tubing assembly and the valve to needle tubing, and to avoid potential spills or fraction losses.
- Regularly inspect the tubings and exchange them if they are worn out or show visible signs of damage.

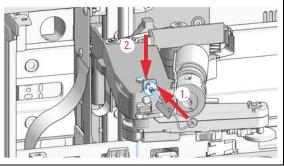

NOTE

Install the tubing as described to maximize its lifetime.


Locate the diverter valve with the finger-tight fittings of the valve to needle tubing assembly.

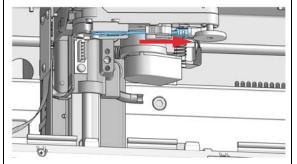

2 Unscrew the finger-tight fitting of the valve to needle tubing assembly at the diverter valve.


3 Using the 4 mm wrench and the 5/16" wrench for counter-holding unscrew the valve to needle tubing from the needle.

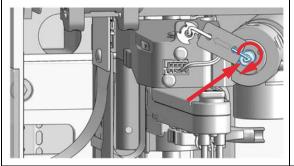

4 Un-clip the tubing from the bottom of the needle carrier assembly.

5 Slide the tubing through the hole in the needle carrier assembly (from bottom to top) (1.) and out of the holder in the z-arm assembly (2.).

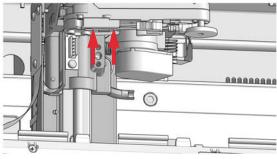
6 Install the new valve to needle tubing assembly by clipping it in to the holder in the z-arm assembly (1.), and sliding it through the hole in the z-arm (2.) and out on the bottom of the needle carrier assembly (top to bottom).



Maintenance


7

Replace the Valve to Needle Tubing (Preparative)


7 Using the 4 mm wrench and the 5/16" wrench for counter-holding, connect the valve to needle tubing to the needle.

9 Screw the finger-tight fitting into the port of the diverter valve

8 After fixing the screw, clip the tubing into the guide on the bottom of the needle carrier assembly.

Next Steps:

- 10 Re-install the tray(s) in the tray base.
- **11** Start the instrument.
- 12 Close the front cover.

Maintenance

Exchange the Preparative Needle Assembly

Exchange the Preparative Needle Assembly

When

- · When the needle is leaky or visibly damaged
- · When the needle is blocked or contaminated

Tools required

p/n Description

8710-1534 Wrench, open end, 4 mm

8710-0510 Open-end wrench 1/4 - 5/16 inch

Parts required

p/n Description

G1364-87201 Preparative needle assembly

Preparations

- Position the transport unit of the fraction collector in the Home position.
- Remove all installed trays from the tray base.
- Position the transport unit of the fraction collector in the Change Parts position and turn off the instrument.
- Remove the needle from its carrier before unscrewing the needle tubing.

WARNING

Personal injury

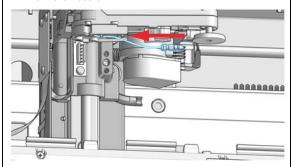
Risk of personal injury caused by the needle arm movement.

✓ Keep fingers away from the needle area.

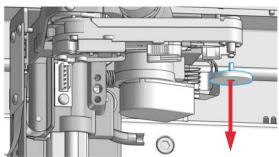
CAUTION

Liquid spills or fraction losses

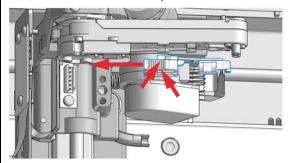
Worn or damaged tubings can cause potential spills or lead to fraction losses.

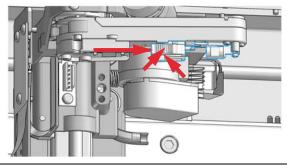

- Explicitly follow the described installation procedures to maximize the lifetime of inlet / waste tubing assembly and the valve to needle tubing, and to avoid potential spills or fraction losses.
- Regularly inspect the tubings and exchange them if they are worn out or show visible signs of damage.

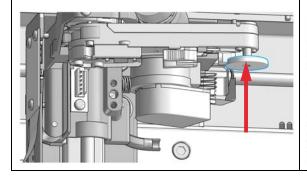
NOTE

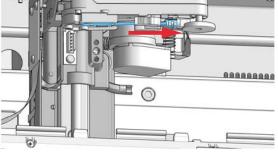

Install the tubing as described to maximize its lifetime.

Exchange the Preparative Needle Assembly

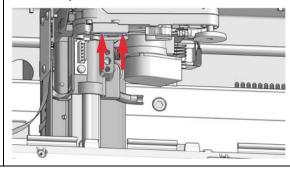

Using the 4 mm wrench and the 5/16" wrench for counter-holding unscrew the valve to needle tubing from the needle.


2 Remove the anti spray cap.


3 Hold the needle assembly between your thumb and forefinger, and slide out the assembly towards the rear of the needle carrier assembly.


4 Insert the new needle assembly into the holder of the needle carrier assembly. Make sure to push it all the way to the front.

5 Install the anti spray cap.


6 Using the 4 mm wrench and the 5/16" wrench for counter-holding, connect the valve to needle tubing to the needle.

7 Maintenance

Exchange the Preparative Needle Assembly

- 7 Re-install the needle to the needle carrier assembly, if you previously removed it. Make sure to slide the needle all the way to the front of the needle carrier assembly (clicks into position).
- 8 After fixing the needle in the needle carrier, clip the tubing into the guide on the bottom of the needle carrier assembly.

Next Steps:

- **9** Re-install the tray(s) in the tray base.
- 10 Start the instrument.
- 11 Close the front cover.

Exchange the Needle/Capillary Carrier Assembly (Preparative)

Exchange the Needle/Capillary Carrier Assembly (Preparative)

When If defective

Tools required p/n Description

8710-2438 Hex key 2.0 mm

Parts required p/n Description

G1364-60011 Needle carrier assembly, preparative scale

Preparations

- Position the transport unit of the fraction collector in the **Home** position.
- Remove all installed trays from the tray base.
- Position the transport unit of the fraction collector in the Change Parts position and turn OFF the instrument.
- · Remove the needle from its carrier before unscrewing the needle tubing.

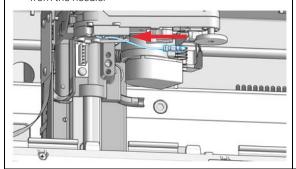
WARNING

Personal injury

Risk of personal injury caused by the needle arm movement.

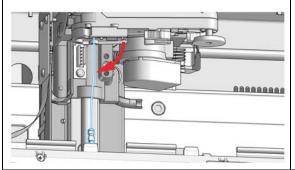
✓ Keep fingers away from the needle area.

CAUTION

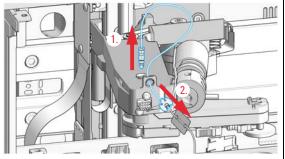

Liquid spills or fraction losses

Worn or damaged tubings can cause potential spills or lead to fraction losses.

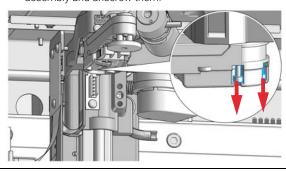
- Explicitly follow the described installation procedures to maximize the lifetime of inlet / waste tubing assembly and the valve to needle tubing, and to avoid potential spills or fraction losses.
- Regularly inspect the tubings and exchange them if they are worn out or show visible signs of damage.

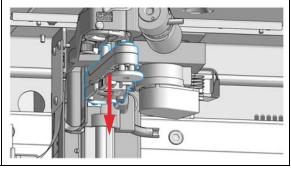

Exchange the Needle/Capillary Carrier Assembly (Preparative)

1 Using the 4 mm wrench and the 5/16" wrench for counter-holding unscrew the valve to needle tubing from the needle.

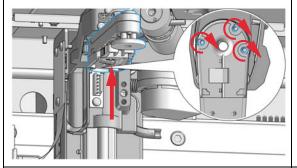


2 Hold the needle/capillary guiding assembly between your thumb and forefinger and slide out the assembly towards the rear of the needle carrier assembly.

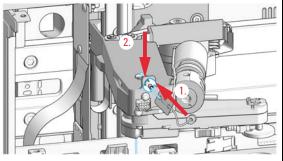

3 Un-clip the tubing from the bottom of the needle carrier assembly.


4 Slide the tubing through the hole in the needle carrier assembly (from bottom to top) (1.) and out of the holder in the z-arm assembly (2.).

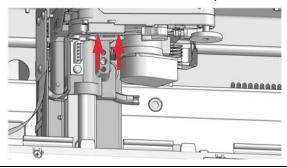
5 Locate the three holding screws of the needle carrier assembly and unscrew them.



6 Slide out the needle carrier assembly to the bottom.


Exchange the Needle/Capillary Carrier Assembly (Preparative)

7 Install the new carrier assembly and secure it with its three holding screws. The carrier is held in position with a pin / slot - fit. Push it all the way up to the top for correct orientation and installation.



- 9 With the needle held underneath the needle carrier assembly and using the 4 mm wrench and the 5/16" wrench for counter-holding connect the valve to needle tubing to the needle.
- 10 Insert the needle or capillary guiding assembly into the holder of the new needle carrier assembly. Make sure to push it all the way to the front (clicks into position).

8 Slide the valve to needle tubing assembly through the hole in the z-arm (1.) and out on the bottom of the needle carrier assembly (top to bottom, 2.).

11 After fixing the screw, clip the tubing into the guide on the bottom of the needle carrier assembly.

Next Steps:

- 12 Re-install the tray(s) in the tray base.
- 13 Start the instrument.
- 14 Close the front cover.

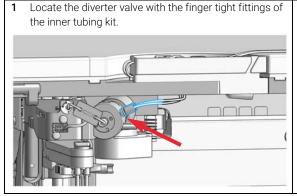
Exchange the Diverter Valve

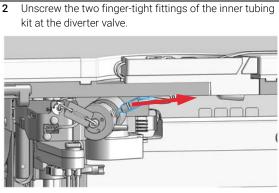
When If leaky or defective

Tools required p/n Description

8710-2438 Hex key 2.0 mm

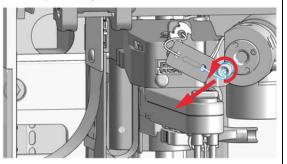
Parts required p/n Description

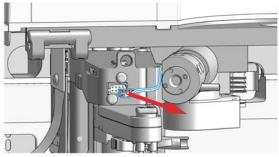

G1364-61901 Diverter valve


Preparations

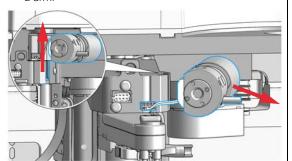
- Position the transport unit of the fraction collector in the Home position.
- Remove all installed trays from the tray base.
- Turn OFF the instrument.

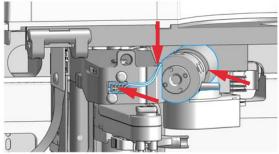
NOTE

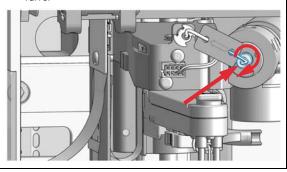

Connect the tubings as described in order to maximize their lifetime and operating security.

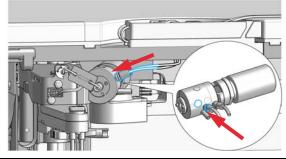


Exchange the Diverter Valve

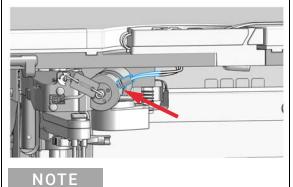

3 Unscrew the finger-tight fitting of the valve to needle tubing assembly at the diverter valve.


4 Disconnect the power cable of the diverter valve from the connector on the front of the z-arm.


5 Using the 2 mm hex key loosen the holding screw of the diverter valve and remove the diverter valve from the z-arm.


6 Install the new diverter valve to the z-arm with its holding screw. Plug in the new diverter valve power cable to the z-arm.

7 Install the valve to needle tubing at the new diverter valve.



8 A color coded ring on one of the tubings and the valve body indicates, which tubing belongs to which port.

Exchange the Diverter Valve

9 Connect the finger-tight fittings of the inner tubing kit to the ports of the diverter valve. The tubings must run into the ports of the diverter valve in horizontal, parallel lines.

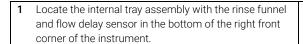
The tubings must not be bent or twisted.

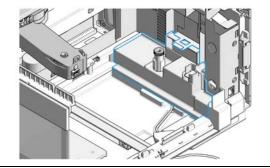
Next Steps:

- **10** Re-install the tray(s) in the tray base.
- 11 Start the instrument.
- **12** Close the front cover.

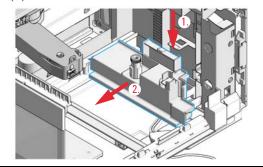
Exchange the Internal Tray

When If defective

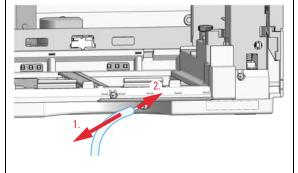

Parts required	#	p/n	Description
----------------	---	-----	-------------


1 G1364-63123 Internal tray preparative scale 1 G1364-63124 Internal tray analytical scale

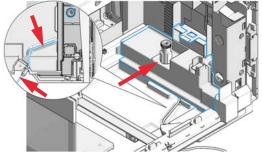
Preparations


OR

- Position the transport unit of the fraction collector in the **Home** position.
- Remove all installed trays from the tray base.
- Turn OFF the instrument.

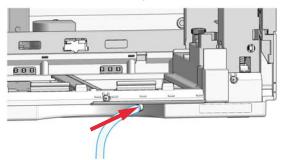


Remove the internal tray by pushing down the plastic holder that holds it in position underneath the metal leash (1.) and sliding the tray to the left at the same time (2.).



Exchange the Internal Tray

3 Remove the waste tubing from the front of the instrument (1.) and slide the internal tray's waste tubing to the rear of the outlet (2.) before sliding the tray out.


4 Install the new tray by sliding it into position underneath the metal leash that holds it. The waste tubing from the internal tray should be guided as shown in detail.

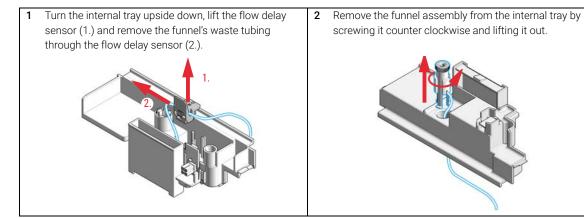
NOTE

Make sure that the waste tubing is slid all the way through the outlet. Its end should be over the edge and below the level of the laboratory desk to avoid back flow of solvent.

5 Re-install the waste tubing.

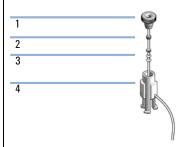
Next Steps:

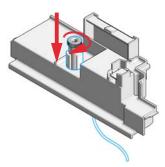
- 6 Re-install the tray(s) in the tray base.
- 7 Start the instrument.
- 8 Close the front cover.

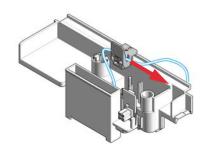

Repair or Exchange a Funnel of the Internal Tray

When leaky or contaminated

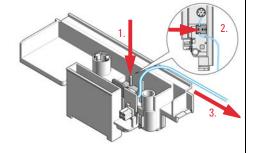
Parts required	p/n	Description
	G1364-68730	Funnel seal kit (pack of 10)
	G1364-43201	Funnel coupler
	G1364-86708	Waste tubing kit 0.5T (analytical scale)
	5022-2200	Funnel


Preparations


- Position the transport unit of the fraction collector in the Home position and remove all installed trays from the tray base.
- · Turn OFF the instrument.
- Remove the internal tray, see "Exchange the Internal Tray" on page 106.


Repair or Exchange a Funnel of the Internal Tray

- 3 Exploded view for the parts of the internal tray. Once the funnel has been removed from the internal tray, it can be disassembled and defective parts can be replaced (funnel screw (1), seals (2), tubing (3) or funnel holder (4)).
- 4 Insert the funnel into the tray and screw it tight (clockwise).



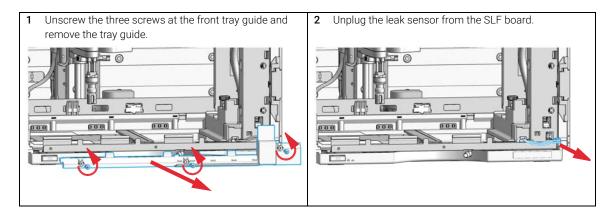
5 Turn the internal tray upside down and guide the funnel's waste tubing through the flow delay sensor.

6 Re-install the plug that holds the flow delay sensor (1.), pull the waste tubing tight through the flow delay sensor (2.) and mount the waste tubing (3.).

Next Steps:

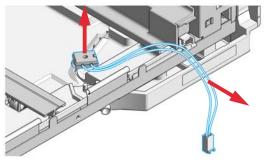
- 7 Reinstall the internal tray and make sure to route the waste tubing out through the outlet of the instrument correctly (see "Exchange the Internal Tray" on page 106).
- 8 Re-install the tray(s) in the tray base.
- 9 Start the instrument.
- 10 Close the front cover.

Exchange the Leak Sensor


When If defective

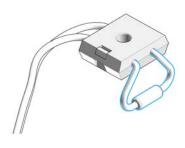
Parts required p/n Description

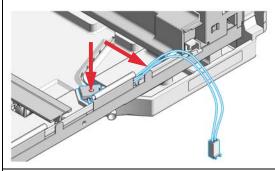
5061-3356 Leak Sensor Assembly


Preparations

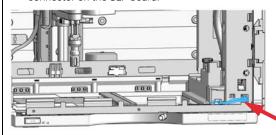
- Position the transport unit of the fraction collector in the **Home** position.
- Remove all installed trays from the tray base.
- Turn OFF the instrument.

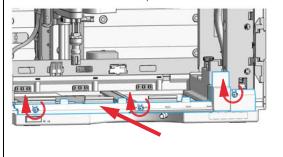
Exchange the Leak Sensor


3 Notice the position of the leak sensor and pull out the old leak sensor and its cable from the instrument.


4 Bend the new leak sensor, so that it has a 90 ° angle to its plastic holder.

NOTE


The bend must be sharp enough that the sensor reaches all the way down to the bottom of the leak plane, but the cables must not be damaged!


5 Install the new leak sensor into its position in the leak plane.

6 Route the leak sensor cable nicely into the recess at the front of the instrument. Plug the leak sensor into its connector on the SLF board.

7 Re-install the front tray guide and fasten it with the three screws. Be careful not to pinch the leak sensor cable.

Next Steps:

- 8 Re-install the tray(s) in the tray base.
- 9 Start the instrument.
- 10 Close the front cover.

Replace the Module Firmware

When

The installation of newer firmware might be necessary

- if a newer version solves problems of older versions or
- to keep all systems on the same (validated) revision.

The installation of older firmware might be necessary

- to keep all systems on the same (validated) revision or
- if a new module with newer firmware is added to a system or
- · if third party control software requires a special version.

Tools required

Description

Agilent Lab Advisor software

Parts required

Description

1 Firmware, tools and documentation from Agilent web site

Preparations

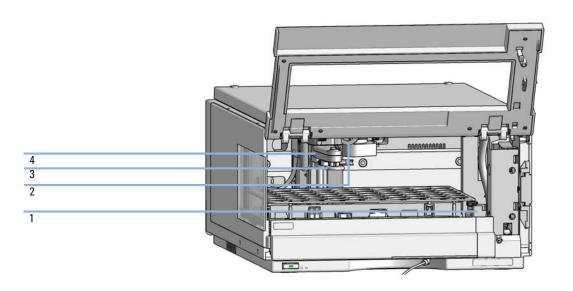
Read update documentation provided with the Firmware Update Tool.

To upgrade/downgrade the module's firmware carry out the following steps:

- 1 Download the required module firmware, the latest FW Update Tool and the documentation from the Agilent web.
 - http://www.agilent.com/en-us/firmwareDownload?whid=69761
- 2 For loading the firmware into the module follow the instructions in the documentation

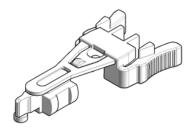
Module Specific Information

There is no specific information for this module.

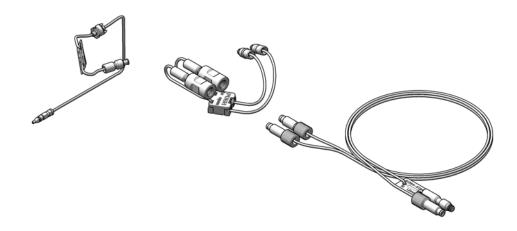

8 Parts for Maintenance and Repair

Preparative Fraction Collector Parts 114
Preparative Fraction Collector Main Assemblies 114
Needle Assembly 115
Tubing Kit 116
Internal Tray Assembly 117
Diverter-Valve Assembly 118
Supported Trays for a Fraction Collector 119
List of Recommended Test Tubes 120
List of Recommended Vials and Caps 121
List of Recommended Plates and Closing Mats 124
Fraction Collector Accessory Kits 126

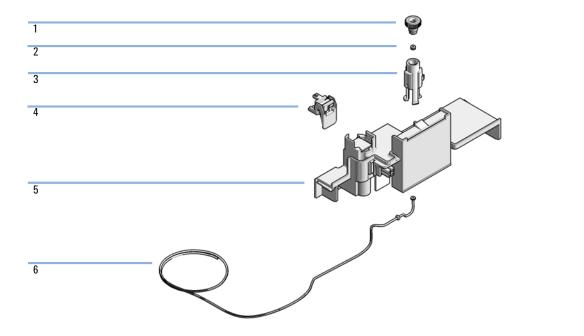
This chapter provides information on parts for maintenance and repair.


Preparative Fraction Collector Main Assemblies

Item	p/n	Description
1	G1364-63123	Internal tray preparative scale
2	G1364-61901	Diverter valve
3	G1364-87201	Preparative needle assembly
4	G1364-60011	Needle carrier assembly, preparative scale
	G1364-43701	Tray compartment divider (not shown)
	G1367-47200	Plug channel (not shown)
	G1329-43200	Adapter air channel (not shown)


Needle Assembly

Item	p/n	Description
1	G1364-87201	Preparative needle assembly
2	G1364-87301	Delay calibration adapter (not shown)


Tubing Kit

Item	p/n	Description
1	G1364-68605	Tubing Kit 40 – 100 mL/min, 1.2 mm ID Standard tubing kit for Preparative Fraction Collector
2	G1364-68603	Tubing Kit 4 – 8 mL/min, 0.5 mm ID (OPTIONAL)
3	G1364-68604	Tubing Kit 15 – 40 mL/min, 0.8 mm ID (OPTIONAL)

Internal Tray Assembly

Item	p/n	Description
	G1364-63123	Internal tray preparative scale
1	5022-2200	Funnel
2	G1364-68730	Funnel seal kit (pack of 10)
3	G1364-43201	Funnel coupler
4		Flow delay sensor
5		Tray internal
6	G1364-86719	Waste tubing kit 0.8T (preparative scale)

Diverter-Valve Assembly

p/n	Description
G1364-61901	Diverter valve
0515-1211	PIN screw

Supported Trays for a Fraction Collector

Supported Trays for a Fraction Collector

For more information on trays, well-plates and collecting tubes for an LC Fraction Collector, refer to the Agilent Web site:

- http://www.chem.agilent.com/store/en_US/LCat-SubCat2ECS_31825/Collect ing-Tubes-and-Trays
- http://www.chem.agilent.com/store/en_US/LCat-SubCat2ECS_31826/Well-Pl ates-and-Trays

p/n	Description
G1364-84541	Full Tray for 4 Well Plates
G1364-84543	Tray Holding 40 Tubes 30 x 100 mm50 mL
G1364-84544	Tray Holding 60 Tubes 25 x 100 mm35 mL
G1364-84545	Tray Holding 126 Tubes 16 x 100 mm14 mL
G1364-84536	Tray Holding 215 Tubes 12 x 100 mm7 mL

p/n	Description
G1313-44513	Halftray for 15 x 6 mL vials
G1313-44512	Halftray for 40 x 2 mL vials
G1329-60011	Thermostattable tray for 100 x 2 mL vials
G2258-60011	Tray for 2 plates + 10 x 2 mL vials
G1313-44510	Tray for 100 x 2 mL vials
G1364-84522	Std. tray for 2 well plates + 10 collecting funnels

List of Recommended Test Tubes

Table 9 Round Bottom Test Tubes

outer diameter	height	Volume	recommended tray type	Part Number
30 mm	100 mm	45 ml	G1364-84503 (40 tubes)	5042-6459 (100/pk)
30 mm	48 mm	20 ml	G1364-84503 (40 tubes)	5042-6458 (100/pk)
25 mm	100 mm	35 ml	G1364-84504 (60 tubes)	5042-6470 (100/pk)
16 mm	100 mm	19 ml	G1364-84505 (126 tubes)	5022-6532 (250/pk)
16 mm	48 mm	9 ml	G1364-84505 (126 tubes)	5022-6533 (100/pk)
12 mm	100 mm	11 ml	G1364-84506 (215 tubes)	5022-6431 (250/pk)
12 mm	48 mm	5 ml	G1364-84506 (215 tubes)	5022-6435 (100/pk)

List of Recommended Vials and Caps

Crimp Top Vials

NOTE

Caps for Use with the Analytical Scale Fraction Collector, only!

p/n	Description
5181-3375	Crimp Top Vial, 2 mL, clear glass, 100/Pack
5183-4491	Crimp Top Vial, 2 mL, clear glass, 1000/Pack
5182-0543	Crimp Top Vial, 2 mL, clear glass, write-on spot, 100/Pack
5183-4492	Crimp Top Vial, 2 mL, clear glass, write-on spot, 1000/Pack
5183-4494	Crimp Top Vial, 2 mL, clear glass, write-on spot, 100/Pack (silanized)
5181-3376	Crimp Top Vial, 2 mL, amber glass, write-on spot, 100/Pack
5183-4493	Crimp Top Vial, 2 mL, amber glass, write-on spot, 1000/Pack
5183-4495	Crimp Top Vial, 2 mL, amber glass, write-on spot, 100/Pack (silanized)

SnapTop Vials

NOTE

Caps for Use with the Analytical Scale Fraction Collector, only!

p/n	Description
5182-0544	Snap Top Vial, 2 mL, clear glass, 100/Pack
5183-4504	Snap Top Vial, 2 mL, clear glass, 1000/Pack
5183-4507	Snap Top Vial, 2 mL, clear glass, 100/Pack (silanized)
5182-0546	Snap Top Vial, 2 mL, clear glass, write-on spot, 100/Pack
5183-4505	Snap Top Vial, 2 mL, clear glass, write-on spot, 1000/Pack
5183-4508	Snap Top Vial, 2 mL, clear glass, write-on spot, 100/Pack (silanized)
5182-0545	Snap Top Vial, 2 mL, amber glass, write-on spot, 100/Pack
5183-4506	Snap Top Vial, 2 mL, amber glass, write-on spot, 1000/Pack
5183-4509	Snap Top Vial, 2 mL, amber glass, write-on spot, 100/Pack (silanized)

List of Recommended Vials and Caps

Screw Top Vials

NOTE

Caps for Use with the Analytical Scale Fraction Collector, only!

p/n	Description
5182-0714	Screw Cap Vials, 2 mL, clear glass, 100/Pack
5183-2067	Screw Top Vial, 2 mL, clear glass, 1000/Pack
5183-2070	Screw Top Vial, 2 mL, clear glass, 100/Pack (silanized)
5182-0715	Screw Top Vial, 2 mL, clear glass, write-on spot, 100/Pack
5183-2068	Screw Top Vial, 2 mL, clear glass, write-on spot, 1000/Pack
5183-2071	Screw Top Vial, 2 mL, clear glass, write-on spot, 100/Pack (silanized)
5182-0716	Screw Cap Vial, 2 mL, amber glass, write-on spot, 100/pk
5183-2069	Screw Top Vial, 2 mL, amber glass, write-on spot, 1000/Pack
5183-2072	Screw Top Vial, 2 mL, amber glass, write-on spot, 100/Pack (silanized)

Crimp Caps

NOTE

Caps for Use with the Analytical Scale Fraction Collector, only!

p/n	Description
5181-1210	Crimp Cap, silver aluminum, septum (clear PTFE/red rubber), 100/Pack
5183-4498	Crimp Cap, silver aluminum, septum (clear PTFE/red rubber), 1000/Pack
5181-1215	Crimp Cap, blue aluminum, septum (clear PTFE/red rubber), 100/Pack
5181-1216	Crimp Cap, green aluminum, septum (clear PTFE/red rubber), 100/Pack
5181-1217	Crimp Cap, red aluminum, septum (clear PTFE/red rubber), 100/Pack

List of Recommended Vials and Caps

Snap Caps

NOTE

Caps for Use with the Analytical Scale Fraction Collector, only!

p/n	Description
5182-0550	Snap Cap, clear polypropylene, septum (clear PTFE/red rubber), 100/Pack
5182-3458	Snap Cap, blue polypropylene, septum (clear PTFE/red rubber), 100/Pack
5182-3457	Snap Cap, green polypropylene, septum (clear PTFE/red rubber), 100/Pack
5182-3459	Snap Cap, red polypropylene, septum (clear PTFE/red rubber), 100/Pack

Screw Caps

NOTE

Caps for Use with the Analytical Scale Fraction Collector, only!

p/n	Description
5182-0717	Screw Cap, blue polypropylene, septum (clear PTFE/red rubber), 100/Pack
5182-0718	Screw Cap, green polypropylene, septum (clear PTFE/red rubber), 100/Pack
5182-0719	Screw Cap, red polypropylene, septum (clear PTFE/red rubber), 100/Pack
5182-0720	Screw Cap, blue polypropylene, septum (clear PTFE/silicone), 100/Pack
5182-0721	Screw Cap, green polypropylene, septum (clear PTFE/silicone), 100/Pack
5182-0722	Screw Cap, red polypropylene, septum (clear PTFE/silicone), 100/Pack

List of Recommended Plates and Closing Mats

Warnings

WARNING

Explosive gas mixtures

There is a risk of explosive gas mixtures in the instrument if flammable solvents are used.

- Cover the plates.
- Remove the plates from the fraction collector after turning it 0FF.
- ✓ Use only solvents with a flash point higher than 200 °C.

CAUTION

Contamination with adhesives

Closing mats with adhesives can cause contamination in the system. The adhesive is soluble in most of the solvents used in HPLC.

In general, do not use closing mats with adhesive. The fraction collector has no prepunch needle; therefore, the adhesive will clog the needle after several injections. List of Recommended Plates and Closing Mats

Recommended plates and closing mats (standard well plates and closing mats for use with the Analytical Scale Fraction Collector only):

p/n	Description
5042-1386	96 well plate 0.5 ml, PP (pack of 10)
5042-1385	96 well plate 0.5 ml, PP (pack of 120)
5042-6454	96DeepAgilent31mm
5065-4402	96CappedAgilent
5188-5321	Glass inserts, 0.35 ml, 1000/Pack
5042-1388	384Agilent
5042-8502	96Agilent conical
G2255-68700	Vial plate for 54 x 2 mL vials (6/pk)
5022-6539	Vial plate for 15 x 6 mL vials (1/pk)
5022-6538	Vial plate for 27 Eppendorf tubes (1/pk)
5042-1389	Closing mat for all 96 Agilent plates

NOTE

Only one type of well-plate at a time can be used in one tray.

Fraction Collector Accessory Kits

Fraction Collector Accessory Kits

p/n	Description
G1364-68735	Accessory Kit for Analytical and Bio-Inert Fraction Collector
G1364-68745	Accessory Kit for Preparative Fraction Collector

9 Identifying Cables

Cable Overview 128
Analog Cables 130
Remote Cables 132
CAN/LAN Cables 136
RS-232 Cables 137
USB 138

This chapter provides information on cables used with the module.

Cable Overview

Cable Overview

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Analog cables

p/n	Description		
35900-60750	Agilent 35900A A/D converter		
01046-60105	Analog cable (BNC to general purpose, spade lugs)		

Remote cables

p/n	Description
5188-8029	ERI to general purpose
5188-8044	Remote Cable ERI – ERI
5188-8045	Remote Cable APG – ERI
5188-8059	ERI-Extension-Cable 1.2 m
5061-3378	Remote Cable to 35900 A/D converter
01046-60201	Agilent module to general purpose
5188-8057	Fraction Collection ERI remote Y-cable

CAN cables

p/n	Description		
5181-1516	CAN cable, Agilent module to module, 0.5 m		
5181-1519	CAN cable, Agilent module to module, 1 m		

LAN cables

p/n	Description		
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)		
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection) $$		

RS-232 cables (not for FUSION board)

p/n	Description
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It is also called "Null Modern Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

USB cables

p/n	Description
5188-8050	USB A M-USB Mini B 3 m (PC-Module)
5188-8049	USB A F-USB Mini B M OTG (Module to Flash Drive)

Identifying Cables

9

Analog Cables

Analog Cables

One end of these cables provides a BNC connector to be connected to Agilent modules. The other end depends on the instrument to which connection is being made.

Agilent Module to 35900 A/D converters

p/n 35900-60750	35900	Pin Agilent module	Signal Name
	1		Not connected
	2	Shield	Analog -
	3	Center	Analog +

Identifying Cables Analog Cables

9

Agilent Module to BNC Connector

p/n 8120-1840	Pin BNC	Pin Agilent module	Signal Name
HIMO	Shield	Shield	Analog -
	Center	Center	Analog +

Agilent Module to General Purpose

p/n 01046-60105	Pin	Pin Agilent module	Signal Name
	1		Not connected
	2	Black	Analog -
	3	Red	Analog +
75			

Remote Cables

Remote Cables

ERI (Enhanced Remote Interface)

- 5188-8029 ERI to general purpose (D-Sub 15 pin male open end)
- 5188-8044 ERI to ERI (D_Sub 15 pin male male)
- 5188-8059 ERI-Extension-Cable 1.2 m (D-Sub15 pin male / female)

p/n 5188-8029		pin	Color code	Enhanced Remote	Classic Remote	Active (TTL)
D-Sub female 15way user's view to connector		1	white	IO1	START REQUEST	Low
101 102 103 104 105 106 107		2	brown	102	STOP	Low
8 7 6 5 4 3 2 1		3	green	103	READY	High
(a) 15 (b) 9	\bigcirc	4	yellow	104	POWER ON	High
1WE DGN +5V PGNI PGNI +24V +24V		5	grey	105	NOT USED	
1WEprom DGND +5V PGND PGND PGND +24V +24V		6	pink	106	SHUT DOWN	Low
ä		7	blue	107	START	Low
		8	red	108	PREPARE	Low
		9	black	1wire DATA		
		10	violet	DGND		
		11	grey-pink	+5V ERI out		
		12	red-blue	PGND		
		13	white-green	PGND		
		14	brown-green	+24V ERI out		
		15	white-yellow	+24V ERI out		
		NC	yellow-brown			

Identifying Cables Remote Cables

9

• 5188-8045 ERI to APG (Connector D_Subminiature 15 pin (ERI), Connector D_Subminiature 9 pin (APG))

p/n 5	188-8045	Pin (ERI)	Signal	Pin (APG)	Active (TTL)
*		10	GND	1	
		1	Start Request	9	Low
		2	Stop	8	Low
		3	Ready	7	High
		5	Power on	6	High
		4	Future	5	
		6	Shut Down	4	Low
		7	Start	3	Low
		8	Prepare	2	Low
		Ground	Cable Shielding	NC	

Remote Cables

• 5188-8057 ERI to APG and RJ45 (Connector D_Subminiature 15 pin (ERI), Connector D_Subminiature 9 pin (APG), Connector plug Cat5e (RJ45))

Table 10 5188-8057 ERI to APG and RJ45

p/n 5188-8057	Pin (ERI)	Signal	Pin (APG)	Active (TTL)	Pin (RJ45)
	10	GND	1		5
	1	Start Request	9	High	
	2	Stop	8	High	
	3	Ready	7	High	
	4	Fraction Trig- ger	5	High	4
	5	Power on	6	High	
	6	Shut Down	4	High	
	7	Start	3	High	
	8	Prepare	2	High	
	Ground	Cable Shield- ing	NC		

One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent modules. The other end depends on the instrument to be connected to.

Remote Cables

Agilent Module to Agilent 35900 A/D Converters

Agilent Module to General Purpose

p/n 01046-60201	Wire Color	Pin Agilent module	Signal Name	Active (TTL)
	White	1	Digital ground	
A O 1	Brown	2	Prepare run	Low
OO KEY	Gray	3	Start	Low
	Blue	4	Shut down	Low
	Pink	5	Not connected	
	Yellow	6	Power on	High
s 15	Red	7	Ready	High
	Green	8	Stop	Low
	Black	9	Start request	Low

CAN/LAN Cables

CAN/LAN Cables

Both ends of this cable provide a modular plug to be connected to Agilent modules CAN or LAN connectors.

CAN Cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m

LAN Cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

RS-232 Cables

p/n	Description
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It is also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

9 Identifying Cables

USB

USB

To connect a USB Flash Drive use a USB OTG cable with Mini-B plug and A socket.

p/n	Description
5188-8050	USB A M-USB Mini B 3 m (PC-Module)
5188-8049	USB A F-USB Mini B M OTG (Module to Flash Drive)

10 Hardware Information

Firmware Description 140

Electrical Connections 143

Rear View of the Module 144

Serial Number Information (ALL) 145

Interfaces 146

Overview Interfaces 148

ERI (Enhanced Remote Interface) 150

USB (Universal Serial Bus) 152

Setting the 6-bit Configuration Switch 153

Special Settings 155

Early Maintenance Feedback 157

Instrument Layout 158

This chapter describes the module in more detail on hardware and electronics.

Firmware Description

The firmware of the instrument consists of two independent sections:

- a non-instrument specific section, called resident system
- an instrument specific section, called *main* system

Resident System

This resident section of the firmware is identical for all Agilent 1100/1200/1220/1260/1290 series modules. Its properties are:

- the complete communication capabilities (CAN, LAN, USB and RS-232)
- memory management
- ability to update the firmware of the 'main system'

Main System

Its properties are:

- the complete communication capabilities (CAN, LAN, USB and RS- 232)
- · memory management
- · ability to update the firmware of the 'resident system'

In addition the main system comprises the instrument functions that are divided into common functions like

- run synchronization through APG/ERI remote,
- error handling,
- diagnostic functions,
- or module specific functions like
 - internal events such as lamp control, filter movements,
 - raw data collection and conversion to absorbance.

Firmware Description

Firmware Updates

Firmware updates can be done with the Agilent Lab Advisor software with files on the hard disk (latest version should be used).

Required tools, firmware and documentation are available from the Agilent web: http://www.agilent.com/en-us/firmwareDownload?whid=69761

The file naming conventions are:

PPPP_RVVV_XXX.dlb, where

- PPPP is the product number, for example, 1315B for the G1315B DAD,
- R the firmware revision, for example, A for G1315B or B for the G1315C DAD,
- VVV is the revision number, for example 650 is revision 6.50,
- XXX is the build number of the firmware.

For instructions on firmware updates refer to section *Replacing Firmware* in chapter "Maintenance" or use the documentation provided with the *Firmware Update Tools*.

NOTE

Update of main system can be done in the resident system only. Update of the resident system can be done in the main system only.

Main and resident firmware must be from the same set

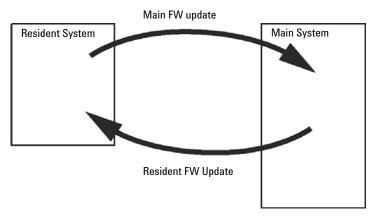


Figure 10 Firmware Update Mechanism

NOTE

Some modules are limited in downgrading due to their main board version or their initial firmware revision. For example, a G1315C DAD SL cannot be downgraded below firmware revision B.01.02 or to a A.xx.xx.

Some modules can be re-branded (e.g. G1314C to G1314B) to allow operation in specific control software environments. In this case, the feature set of the target type is used and the feature set of the original one is lost. After re-branding (e.g. from G1314B to G1314C), the original feature set is available again.

All this specific information is described in the documentation provided with the firmware update tools.

The firmware update tools, firmware and documentation are available from the Agilent web.

http://www.agilent.com/en-us/firmwareDownload?whid=69761

Electrical Connections

- The CAN bus is a serial bus with high-speed data transfer. The two
 connectors for the CAN bus are used for internal module data transfer and
 synchronization.
- The ERI/REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shutdown, prepare, and so on.
- With the appropriate software, the LAN connector may be used to control the module from a computer through a LAN connection. This connector is activated and can be configured with the configuration switch.
- With the appropriate software, the USB connector may be used to control the module from a computer through a USB connection.
- The power input socket accepts a line voltage of 100 240 VAC ± 10 % with a line frequency of 50 or 60 Hz. Maximum power consumption varies by module. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses because automatic electronic fuses are implemented in the power supply.

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Rear View of the Module

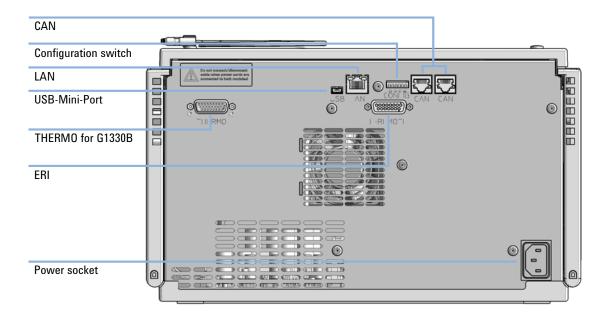


Figure 11 Fraction collector electrical connections

Electrical Connections

Serial Number Information (ALL)

The serial number information on the instrument labels provide the following information:

CCXZZ00000

Format

CC

Country of manufacturing

DE = Germany

DF = Japan

CN = China

X

Alphabetic character A-Z (used by manufacturing)

ZZ

Alpha-numeric code 0-9, A-Z, where each combination unambiguously denotes a module (there can be more than one code for the same module)

Serial number

Interfaces

The Agilent InfinityLab LC Series modules provide the following interfaces:

Table 11 Agilent InfinityLab LC Series Interfaces

Module	CAN	USB	LAN (on-board)	RS-232	Analog	APG (A) / ERI (E)	Special
Pumps							
G7104A/C	2	No	Yes	Yes	1	А	
G7110B	2	Yes	Yes	No	No	Е	
G7111A/B, G5654A	2	Yes	Yes	No	No	Е	
G7112B	2	Yes	Yes	No	No	Е	
G7120A	2	No	Yes	Yes	1	А	
G7161A/B	2	Yes	Yes	No	No	Е	
Samplers							
G7129A/B/C	2	Yes	Yes	No	No	Е	
G7167B/C, G5667A	2	Yes	Yes	No	No	Е	
G7157A	2	Yes	Yes	No	No	Е	
Detectors							
G7114A/B	2	Yes	Yes	No	1	Е	
G7115A	2	Yes	Yes	No	1	Е	
G7117A/B/C	2	Yes	Yes	No	1	Е	
G7121A/B	2	Yes	Yes	No	1	Е	
G7162A/B	2	Yes	Yes	No	1	E	
G7165A	2	Yes	Yes	No	1	E	

Table 11 Agilent InfinityLab LC Series Interfaces

Module	CAN	USB	LAN (on-board)	RS-232	Analog	APG (A) / ERI (E)	Special
Fraction Collectors							
G7158B	2	Yes	Yes	No	No	E	
G7159B	2	Yes	Yes	No	No	E	
G7166A	2	No	No	No	No	No	Requires a host module with on-board LAN with minimum FW B.06.40 or C.06.40, or with addi- tional G1369C LAN Card
G1364E/F, G5664B	2	Yes	Yes	No	No	Е	THERMOSTAT for G1330B
Others							
G7116A/B	2	No	No	No	No	No	Requires a HOST mod- ule via CAN
G7122A	No	No	No	Yes	No	А	
G7170B	2	No	No	No	No	No	Requires a host module with on-board LAN with minimum FW B.06.40 or C.06.40, or with addi- tional G1369C LAN Card

NOTE

The detector (DAD/MWD/FLD/VWD/RID) is the preferred access point for control via LAN. The inter-module communication is done via CAN.

- CAN connectors as interface to other modules
- LAN connector as interface to the control software
- RS-232C as interface to a computer
- USB (Universal Series Bus) as interface to a computer
- REMOTE connector as interface to other Agilent products
- Analog output connector(s) for signal output

Overview Interfaces

CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

LAN

The modules have either an interface slot for a LAN card (e.g. Agilent G1369B/C LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a PC with the appropriate control software. Some modules have neither on-board LAN nor an interface slot for a LAN card (e.g. G1170A Valve Drive or G4227A Flexible Cube). These are hosted modules and require a Host module with firmware B.06.40 or later or with additional G1369C LAN Card.

NOTE

If an Agilent detector (DAD/MWD/FLD/VWD/RID) is in the system, the LAN should be connected to the DAD/MWD/FLD/VWD/RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.

USB

The USB interface replaces the RS-232 Serial interface in new FUSION generation modules. For details on USB refer to "USB (Universal Serial Bus)" on page 152.

Analog Signal Output

The analog signal output can be distributed to a recording device. For details refer to the description of the module's main board.

Remote (ERI)

The ERI (Enhanced Remote Interface) connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

It allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired- or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to **SHUT DOWN** the system's critical parts in case any module detects

a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the **POWER ON** state of all connected modules. Control of analysis is maintained by signal readiness **READY** for next analysis, followed by **START** of run and optional **STOP** of run triggered on the respective lines. In addition **PREPARE** and **START REQUEST** may be issued. The signal levels are defined as:

- standard TTL levels (0 V is logic true, + 5.0 V is false),
- fan-out is 10,
- input load is 2.2 kOhm against + 5.0 V, and
- output are open collector type, inputs/outputs (wired- or technique).

NOTE

All common TTL circuits operate with a 5 V power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5.0 V (with respect to the ground terminal).

Table 12 ERI signal distribution

Pin	Signal	Description
1	START REQUEST	(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.
2	STOP	(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.
3	READY	(H) System is ready for next analysis. Receiver is any sequence controller.
4	POWER ON	(H) All modules connected to system are switched on. Receiver is any module relying on operation of others.
5		Not used
6	SHUT DOWN	(L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.
7	START	(L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.
8	PREPARE	(L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.

Special Interfaces

There is no special interface for this module.

ERI (Enhanced Remote Interface)

ERI replaces the AGP Remote Interface that is used in the HP 1090/1040/1050/1100 HPLC systems and Agilent 1100/1200/1200 Infinity HPLC modules. All new InfinityLab LC Series products using the FUSION core electronics use ERI. This interface is already used in the Agilent Universal Interface Box 2 (UIB2)

ERI Description

The ERI interface contains eight individual programmable input/output pins. In addition, it provides 24 V power and 5 V power and a serial data line to detect and recognize further add-ons that could be connected to this interface. This way the interface can support various additional devices like sensors, triggers (in and out) and small controllers, etc.

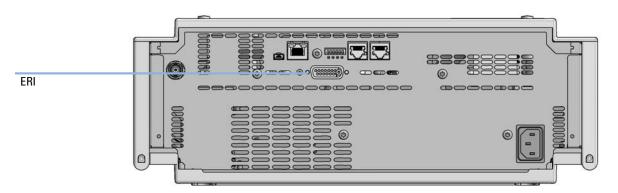


Figure 12 Location of the ERI interface (example shows a G7114A/B VWD)

	Pin	Enhanced Remote
D-Sub female 15way	1	IO 1 (START REQUEST)
	2	IO 2 (STOP)
101 102 103 103 104 105 106	3	IO 3 (READY)
	4	IO 4 (POWER ON)
	5	IO 5 (NOT USED)
1WEprom DGND +5V PGND PGND +24V +24V	6	IO 6 (SHUT DOWN)
o o	7	IO 7 (START)
	8	IO 8 (PREPARE)
	9	1 wire DATA
	10	DGND
	11	+5 V ERI out
	12	PGND
	13	PGND
	14	+24 V ERI out
	15	+24 V ERI out

IO (Input/Output) Lines

- Eight generic bi-directional channels (input or output).
- Same as the APG Remote.
- Devices like valves, relays, ADCs, DACs, controllers can be supported/controlled.

1-Wire Data (Future Use)

This serial line can be used to read out an EPROM or write into an EPROM of a connected ERI-device. The firmware can detect the connected type of device automatically and update information in the device (if required).

5V Distribution (Future Use)

- Available directly after turn on oft the hosting module (assures that certain base functionality of the device can be detected by firmware).
- For digital circuits or similar.
- Provided 500 mA maximum.
- Short-circuit proof with automatic switch off (by firmware).

24V Distribution (Future Use)

- Available by firmware command (defined turn on/off).
- For devices that need higher power
 - Class 0: 0.5 A maximum (12 W)
 - Class 1: 1.0 A maximum (24 W)
 - Class 2: 2.0 A maximum (48 W)
- Class depends on hosting module's internal power overhead.
- If a connected device requires more power the firmware detects this (overcurrent detection) and provides the information to the user interface.
- Fuse used for safety protection (on board).
- Short circuit will be detected through hardware.

USB (Universal Serial Bus)

USB (Universal Serial Bus) - replaces RS232, supports:

- a PC with control software (for example Agilent Lab Advisor)
- USB Flash Disk

Setting the 6-bit Configuration Switch

The 6-bit configuration switch is located at the rear of the module with FUSION electronics. Switch settings provide configuration parameters for LAN and instrument specific initialization procedures.

All modules with FUSION electronics:

- Default is ALL switches DOWN (best settings).
 - Default IP address for LAN 192.168.254.11
- For specific LAN modes switches 4-5 must be set as required.
- For boot resident/cold start modes switches 1+2 or 6 must be UP.

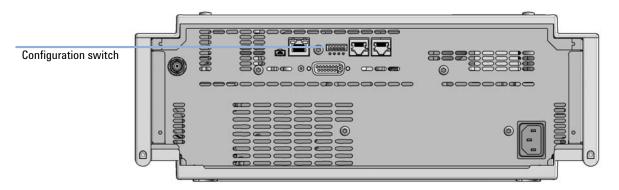


Figure 13 Location of Configuration switch (example shows a G7114A/B VWD)

Hardware Information

Setting the 6-bit Configuration Switch

Table 13 6-bit Configuration Switch

	Mode		Function/Setting						
	Switch 1	Switch 2	Switch 3	Switch 4	Switch 5	Switch 6			
\mathbf{COM}^{1}	0	n.a. ²	n.a.	LAN Ini	t Mode	n.a.			
Use Default IP Address ³		0	0	0	0	0			
Use Stored IP Address		0	0	0 1		0			
Use DHCP to request IP Address ⁴		0	0	1	0	0			
Test	1	System	n.a.	n.a.	n.a.	ColdStart			
Boot Main System / Keep Data		0	0	0	0	0			
Boot Resident System / Keep Data		1	0	0	0	0			
Boot Main System / Revert to Default Data		0	0	0	0	1			
Boot Resident Sys Default		1	0	0	0	1			

¹ When selecting mode COM, settings are stored to non-volatile memory. When selecting mode TEST, COM settings are taken from non-volatile memory.

² not assigned - Always keep these switches on position '0' (off)

³ Default IP Address is 192.168.254.11

⁴ Host Name will be the MAC address.

Setting the 6-bit Configuration Switch

Special Settings

Boot-Resident/Main

Firmware update procedures may require this mode in case of firmware loading errors (main/resident firmware part).

If you use the following switch settings and power the instrument up again, the instrument firmware stays in the resident/main mode. In resident mode, it is not operable as a module. It only uses basic functions of the operating system for example, for communication. In this mode the main firmware can be loaded (using update utilities).

Forced Cold Start

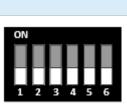
A forced cold start can be used to bring the module into a defined mode with default parameter settings.

- Boot Main System / Revert to Default Data
 The instrument will boot to main mode and changes to the module's default parameter. May be also required to load resident firmware into the module.
- Boot Resident System / Revert to Default Data
 The instrument will boot to resident mode and changes to the module's default parameter. May be also required to load main firmware into the module.

CAUTION

Loss of data

Forced cold start erases all methods and data stored in the non-volatile memory. Exceptions are calibration settings, diagnosis and repair log books which will not be erased.


✓ Save your methods and data before executing a forced cold start.

If you use the following switch settings and power the instrument up again, it will start as described above.

Hardware Information

Setting the 6-bit Configuration Switch

Table 14 Boot Resident / Forced Coldstart

SW2	SW3	SW4	SW5	SW6	Init Mode
0	0	0	0	0	Boot Main System / Keep Data
1	0	0	0	0	Boot Resident System / Keep Data
0	0	0	0	1	Boot Main System / Revert to Default Data
1	0	0	0	1	Boot Resident System / Revert to Default Data
	0	0 0 1 0 0 0	0 0 0 1 0 0 0 0 0	0 0 0 0 1 0 0 0 0 0 0 0	0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Note: The setting '0' (down) is essential.

Early Maintenance Feedback

Early Maintenance Feedback

Maintenance requires the exchange of components which are subject to wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the module and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (**EMF**) feature monitors the usage of specific components in the instrument, and provides feedback when the user-selectable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

EMF Counters

EMF counters increment with use and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. Some counters can be reset to zero after the required maintenance procedure.

Using the **EMF Counters**

The user-settable **EMF** limits for the **EMF Counters** enable the early maintenance feedback to be adapted to specific user requirements. The useful maintenance cycle is dependent on the requirements for use. Therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument

Setting the EMF Limits

The setting of the **EMF** limits must be optimized over one or two maintenance cycles. Initially the default **EMF** limits should be set. When instrument performance indicates maintenance is necessary, take note of the values displayed by the **EMF counters**. Enter these values (or values slightly less than the displayed values) as **EMF** limits, and then reset the **EMF counters** to zero. The next time the **EMF counters** exceed the new **EMF** limits, the **EMF** flag will be displayed, providing a reminder that maintenance needs to be scheduled.

Instrument Layout

The industrial design of the module incorporates several innovative features. It uses Agilent's E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers of foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself

```
General Safety Information
                             160
General Safety Information 160
Safety Standards 160
General 160
Before Applying Power 161
Ground the Instrument 161
Do Not Operate in an Explosive Atmosphere 162
Do Not Remove the Instrument Cover 162
Do Not Modify the Instrument 162
In Case of Damage 162
Solvents 163
Safety Symbols 164
Waste Electrical and Electronic Equipment (WEEE) Directive 166
Radio Interference 167
Sound Emission 168
Agilent Technologies on Internet 169
```

This chapter provides additional information on safety, legal, and web.

General Safety Information

General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.

The protection provided by the equipment may be impaired.

The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

Safety Standards

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

General

Do not use this product in any manner not specified by the manufacturer. The protective features of this product may be impaired if it is used in a manner not specified in the operation instructions.

Before Applying Power

WARNING

Wrong voltage range, frequency or cabling

Personal injury or damage to the instrument

- ✓ Verify that the voltage range and frequency of your power distribution matches to the power specification of the individual instrument.
- Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.
- Make all connections to the unit before applying power.

NOTE

Note the instrument's external markings described under "Safety Symbols" on page 164.

Ground the Instrument

WARNING

Missing electrical ground

Electrical shock

- If your product is provided with a grounding type power plug, the instrument chassis and cover must be connected to an electrical ground to minimize shock hazard.
- The ground pin must be firmly connected to an electrical ground (safety ground) terminal at the power outlet. Any interruption of the protective (grounding) conductor or disconnection of the protective earth terminal will cause a potential shock hazard that could result in personal injury.

General Safety Information

Do Not Operate in an Explosive Atmosphere

WARNING

Presence of flammable gases or fumes

Explosion hazard

Do not operate the instrument in the presence of flammable gases or fumes.

Do Not Remove the Instrument Cover

WARNING

Instrument covers removed

Electrical shock

- ✓ Do Not Remove the Instrument Cover
- Only Agilent authorized personnel are allowed to remove instrument covers. Always disconnect the power cables and any external circuits before removing the instrument cover.

Do Not Modify the Instrument

Do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Sales and Service Office for service and repair to ensure that safety features are maintained.

In Case of Damage

WARNING

Damage to the module

Personal injury (for example electrical shock, intoxication)

Instruments that appear damaged or defective should be made inoperative and secured against unintended operation until they can be repaired by qualified service personnel.

Solvents

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- ✓ Do not use solvents with an auto-ignition temperature below 200 °C (392 °F). Do not use solvents with a boiling point below 56 °C (133 °F).
- Avoid high vapor concentrations. Always keep the temperature in the sample compartment at least 25 K below the boiling point of the solvent used.
- Do not operate the instrument in an explosive atmosphere.
- ✓ Do not use solvents of ignition Class IIC according IEC 60079-20-1 (for example, carbon disulfide).
- Reduce the volume of substances to the minimum required for the analysis.
- Never exceed the maximum permissible volume of solvents (8 L) in the solvent cabinet. Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for solvent cabinet.
- Ground the waste container.
- Regularly check the filling level of the waste container. The residual free volume in the waste container must be large enough to collect the waste liquid.
- To achieve maximal safety, regularly check the tubing for correct installation.

NOTE

For details, see the usage guideline for the solvent cabinet. A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available in the Agilent Information Center or via the Internet.

General Safety Information

Safety Symbols

Table 15 Symbols

The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage.

Indicates dangerous voltages.

Indicates a protected ground terminal.

The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.

Sample Cooler unit is designed as vapor-compression refrigeration system. Contains fluorinated greenhouse gas (refrigerant) according to the Kyoto protocol.

For specifications of refrigerant, charge capacity, carbon dioxide equivalent (CDE), and global warming potential (GWP) see instrument label.

Flammable Material

For Sample Thermostat which uses flammable refrigerant consult Agilent Information Center / User Manual before attempting to install or service this equipment. All safety precautions must be followed.

Confirms that a manufactured product complies with all applicable European Community directives. The European Declaration of Conformity is available at:

http://regulations.corporate.agilent.com/DoC/search.htm

Manufacturing date.

Power symbol indicates On/Off.

The apparatus is not completely disconnected from the mains supply when the power switch is in the Off position

Pacemake

Magnets could affect the functioning of pacemakers and implanted heart defibrillators.

A pacemaker could switch into test mode and cause illness. A heart defibrillator may stop working. If you wear these devices keep at least 55 mm distance to magnets. Warn others who wear these devices from getting too close to magnets.

Table 15 Symbols

Magnetic field

Magnets produce a far-reaching, strong magnetic field. They could damage TVs and laptops, computer hard drives, credit and ATM cards, data storage media, mechanical watches, hearing aids and speakers. Keep magnets at least 25 mm away from devices and objects that could be damaged by strong magnetic fields.

Indicates a pinching or crushing hazard

Indicates a piercing or cutting hazard.

WARNING

A WARNING

alerts you to situations that could cause physical injury or death.

Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

A CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

Do not proceed beyond a caution until you have fully understood and met the indicated conditions. Waste Electrical and Electronic Equipment (WEEE) Directive

Waste Electrical and Electronic Equipment (WEEE) Directive

This product complies with the European WEEE Directive marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

NOTE

Do not dispose of in domestic household waste

To return unwanted products, contact your local Agilent office, or see http://www.agilent.com for more information.

Radio Interference

Radio Interference

Cables supplied by Agilent Technologies are screened to provide optimized protection against radio interference. All cables are in compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with unscreened cables, or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.

Sound Emission

Sound Emission

Manufacturer's Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)

Agilent Technologies on Internet

Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

In This Book

This manual contains technical reference information about the Agilent InfinityLab LC Series 1260 Infinity II Preparative Fraction Collector (G1364E) The manual describes the following:

- introduction,
- · requirements and specifications,
- · using the fraction collector,
- · preparing,
- · troubleshooting and diagnostics,
- errors,
- maintenance,
- parts and materials,
- cables,
- · hardware information,
- safety and related information.

www.agilent.com

© Agilent Technologies Inc. 2017-2019

Published in Germany 10/2019

Part No: G1364-90030 Rev. C Document No: SD-29000228 Rev. C

